

К70
Рекомендовано Міністерством освіти і науки України (наказ МОН України № 235 від 16.03.2011 р.)

> Наукову експертизу проводив
> Інститут теоретичної фізики ім. М.М. Боголюбова Національної академії наук України
> Психолого-педагогічну експертизу проводив Інститут педагогіки Національної академії педагогічних наук України

Коршак Є.B.

К70 Фізика : 11 кл. : підруч. для загальноосвіт. навч. закл. : рівень стандарту / Є.В. Коршак, О.І. Ляшенко, В.Ф. Савченко. - К. : Генеза, 2011. - 256 с. : іл. ISBN 978-966-11-0066-3.

ББК 22.3я721
Головна увага приділяеться висвітленню основних понять і законів електродинаміки, хвильової і квантової оптики, атомної і ядерної фізики відповідно до програми рівня стандарту. Додатковий матеріал (для тих, хто защікавиться фізикою або складатиме ЗНО з фізики); приклади розв'язування задач і вправи для самостійної роботи учнів; інструкції до лабораторних робіт та описи фізичних демонстрацій, ілюстрації; прикладні застосування фізики в техніці і сучасних технологічних процесах сприятимуть навчанню і формуванню знань та експериментальних умінь учнів. Структура та наповнення підручника дають змогу легко зорієнтуватись у його змісті і використовувати навчальну книгу як учителю для організації навчального процесу, так і учневі для самостійного оволодіння навчальним матеріалом.

[^0]
Дорогий друже!

Цією книжкою завершується шкільний курс фізики, який ти вивчав упродовж чотирьох років. За цей час ти оволодів основними поняттями і законами фізики, навчився досліджувати фізичні явища і процеси, застосовувати набуті знання для пояснення явищ природи, розв'язувати задачі. Сподіваємось, що набуті знання і досвід знадобляться тобі в подальшій діяльності. Адже ти живеш у сучасному високотехнологічному суспільстві, де науковий світогляд і відповідний стиль мислення е основою комфортного, безконфліктного співіснування людини і природи, чинником соціально-економічного прогресу. Світ техніки і високих технологій, у якому живе сучасна людина, вимагає від кожного з нас якщо не глибокого знання тих процесів, що відбуваються довкола, то хоча б розуміння їхньої природи і передбачення наслідків, до яких можуть призвести нехтування законами природи, невігластво і неосвіченість. Фізика, як насамперед світоглядна наука, формує мислення, озброює загальнонауковими методами пізнання, які потрібні кожній людині незалежно від її фаху чи особливостей професійної діяльності.

Як відомо, підручник рівня стандарту зорієнтований на ті обов'язкові результати навчання, яких повинні досягти всі, хто закінчуе середню школу. Разом з тим автори свідомі того, що дехто з вас буде складати іспит з фізики під час зовнішнього незалежного оцінювання (3НО), необхідного для вступу у вищі навчальні заклади. Тому деякі теми ми розширили і доповнили тими відомостями з фізики, які потрібні за програмою ЗНО. Вони позначені зірочкою або виділені як матеріал для додаткового читання.

В одинадцятому класі ти поглиблюватимешा свої знання з електричних явищ, оптики, атомної і ядерної фізики. Набуті раніше знання на цьому етапі навчання фізики отримають теоретичне узагальнення, розширене трактування і сприятимуть формуванню цілісності уявлень про фізичну картину світу.

Щоб полегшити тобі орієнтування в тексті і поліпшити засвоення навчального матеріалу, автори зберегли ті позначення, які використовувалися в підручнику для 10 класу. Нагадаємо, що вони означають:

[^1]

Засвоївши матеріал розділу, ви будете знати:

- основні етапи становлення вчення про електричні явища, властивості електричного поля; закони Кулона, Ома, правила безпеки під час роботи з електричними приладами; фізичні величини, що характеризують властивості електричного поля;
- сутність силової й енергетичної характеристик електричного поля, поляризації діелектриків, механізм електропровідності напівпровідників.

Ви зможете пояснити:

- природу електричної взаємодії електричного струму в різних середовищах; вплив провідників і діелектриків на електричне поле;
- фізичну сутність електричних явищ, механізм утворення EPC;
- принципи дії електричних приладів, що використовують у побуті.

Ви будете вміти:

- зображати схеми з'єднання конденсаторів і провідників;
- розв'язувати задачі на розрахунок напруженості й потенціалу електричного поля, роботи і потужності електричного струму;
- розраховувати електричні кола з послідовним і паралельним з'єднанням провідників, конденсаторів.

§ 1. Електричне поле заряgжених нерухомих тіл

Серед численних явищ природи одне з провідних місць займає явище електризації. Пригадаємо, що потерта хутром ебонітова паличка починає притягувати різноманітні дрібні предмети. Подібне спостерігається і зі скляною паличкою, потертою шовком. Розміщені поруч на невеликій відстані, наелектризовані тіла притягуються або відштовхуються між собою. Такі взаємодії назвали електричними.

Про тіла, між якими існує електрична взаємодія, кажуть, що вони мають електричні заряди.

Властивість, якої тіла набувають під час електризації, називають електричним зарядом.

Розрізняють два види електричних зарядів - позитивні і негативні. Цей поділ умовний, оскільки за проявом своїх властивостей вони не відрізняються один від одного, а лише взаемодіють по-різному. Тіла, які мають різнойменні заряди, притягуються одне до одного, а ті, що мають однойменні заряди, - відштовхуються.

Однойменно заряджені тіла відштовхуються, різнойменно заряджені - притягуються.

Одиницею вимірювання електричного заряду є кулон (Кл).
Електричний заряд макроскопічного тіла можна змінювати, поділяючи його на менші частини. Межею поділу заряду макроскопічного тіла є заряд електрона. Електрон має найменше значення електричного заряду - $1,6 \cdot 10^{-19}$ Кл. Заряд електрона вважаеться негативним.

Заряд електрона дорівнює $\mathbf{1 , 6} \cdot \mathbf{1 0}^{-19} \mathrm{~K}$.

Під час розрахунків у формулах значення заряду тіла позначається латинською буквою Q. Експериментально встановлено, що в звичайних електричних процесах заряд може змінюватися лише на значення, кратне заряду електрона:

$$
Q=N \cdot e,
$$

де N-кількість електронів, e - значення заряду електрона.
Тіла, які мають негативний заряд, мають надлишок вільних електронів, а ті, що мають нестачу електронів, є позитивно зарядженими. Тобто електризація тіл пояснюється нестачею (позитивно заряджені тіла) або надлишком (негативно заряджені тіла) електронів. У електрично незарядженого тіла електричний заряд електронів, що міститься в ньому, скомпенсований позитивним зарядом ядер атомів, з яких воно складається.

Мал. 1.1. Взаемодія металевої гільзи і заряяженої кулі

Розглянемо тепер докладніше взаємодію заряджених тіл. Закріпимо металеву кулю на стрижні електрометра i зарядимо її від ебонітової палички, потертої хутром. Стрілка відхилиться від положення рівноваги і засвідчить, що куля має електричний заряд. Підвісимо на тонкій нитці легку металеву гільзу і почнемо підносити ї до кулі. На певній відстані стане помітним притягання гільзи до кулі, внаслідок чого нитка відхилиться від вертикального положення (мал. 1.1).

Якщо однойменно заряджені гільзи на нитках розмістити під ковпаком повітряного насоса і відкачати з-під нього повітря, то змін у їх взаємодії не помітимо (мал. 1.2).

Який же механізм взаємодії заряджених тіл? Пошуку відповіді на це питання присвятили життя багато вчеwww.testosvit.com

них. Видатний англійський фізик М. Фарадей, узагальнивши всі відомі на той час знання з електрики, припустив, що навколо електрично заряджених тіл існує електричне поле, завдяки якому відбувається їхня взаємодія.

Електричне поле - це особливий вид матерії, завдяки якому відбувається електрична взаємодія. Воно існує навколо електрично заряджених тіл і викликає взаємодію між ними.

Які ж властивості електричного поля?
Основною властивістю електричного поля є здатність діяти на заряджені тіла. Відповідно до сучасних уявлень, які склалися на основі численних досліджень, взаємодія заряджених тіл відбувається тому, що на кожне з них діє поле іншого тіла.

3міни в електричному полі поширюються зі швидкістю світла у вакуумі.

Якщо стан одного з взаємодіючих електрично заряджених тіл змінюеться, то відбуваються зміни і його електричного поля. Змінюються вони не миттево, а зі скінченною швидкістю, що дорівнюе швидкості світла у вакуумі.

Теоретичними дослідженнями іншого видатного англійського вченого Дж. Максвелла було встановлено, що існує єдине електромагнітне поле, частинним проявом якого є електричне поле. У системі відліку, де заряджені тіла нерухомі, це поле називається електростатичним, тобто полем нерухомих заряджених тіл.

Мал. 12. Електричні сили gіють і у вакуумі

Електричне поле є проявом загального електромагнітного поля.

1. Хто встановив існування електричного поля?
2. У чому цінність теоретичних досліджень Дж. Максвелла?
3. Яке поле називають електростатичним?

§ 2. Напруженість електричного поля

Дія електричного поля на заряджене тіло може мати різну інтенсивність. Сила, яка характеризуе цю дію, залежатиме не лише від значення заряду даного тіла, а й від характеристик поля. Проте в кожному окремому випадку для даної точки поля вона буде пропорційною значенню електричного заряду тіла. Установлено, що відношення сили \vec{F}, що діє на електричний заряд, до його значення Q буде однаковим для певної точки поля:

$$
\frac{\vec{F}_{1}}{Q_{1}}=\frac{\vec{F}_{2}}{Q_{2}}=\frac{\vec{F}_{3}}{Q_{3}}=\ldots=\frac{\vec{F}}{Q},
$$

де \vec{F} - сила, що діє на заряджене тіло; Q - значення електричного заряду тіла.

В електричному полі іншого тіла або в іншій точці даного поля це відношення також справджуватиметься, але його значення може бути іншим. Відношення $\frac{F}{Q}$ характеризує силову дію поля в даній точці і називається напруженістю електричного поля:

$$
\vec{E}=\frac{\vec{F}}{Q} .
$$

Напруженість електричного поля - це фізична величина, яка є силовою характеристикою електричного поля і дорівнює відношенню сили, що діє на заряджкене тіло, до його електричного заряду.

Напруженість е векторною величиною, яка визначає значення сили, що діє на заряджене тіло, та ї напрям.

Для вимірювання напруженості електричного поля використовують одиницю вимірювання *ньютон на кулон * (позначаеться $\frac{\mathrm{H}}{\mathrm{K} \text {) }}: 1 \frac{\mathrm{H}}{\mathrm{K} \text { д }}$ дорівнює напруженості такого електричного поля, яке діє на заряд 1 Кл із силою 1 H .

З означення випливає і найпростіший спосіб вимірювання напруже-

Мал. 13. На кульку giють сидти тяжіння і натягу нитки www.testosvit.com

ності електричного поля: знаючи значення заряду тіла, достатньо виміряти силу, яка діє на нього в електричному полі.

Задача. Легка кулька масою 0,4 г підвішена на нитці і мае позитивний електричний заряд $4,9 \cdot 10^{-9} \mathrm{~K}$. Після внесення іі в електричне поле вона відхиляеться на кут 7°. Чому дорівнює напруженість електричного поля?

Розв'язання

За відсутності електричного поля на кульку діє лише сила тяжіння, що викликає натяг нитки підвісу, і тому вона займає вертикальне положення (мал. 1.3).

В електричному полі (мал. 1.4) на кульку, крім сили тяжіння, діятиме також сила електричної взаємодії. За умовою нитка утворює кут 7° з вертикаллю (на мал. 1.5 цей кут показано значно більшим для зручності аналізу ситуації). З малюнка видно, що $F=m g \operatorname{tg} \alpha$, а напруженість $E=\frac{F}{Q}=\frac{m g \operatorname{tg} \alpha}{Q}$.

Зробивши розрахунки, одержимо

$$
E=0,4 \cdot 10^{-3} \mathrm{~K} \mathrm{\Gamma} \cdot 10 \mathrm{~m} / \mathrm{c}^{2} \cdot \frac{0,1228}{4,9 \cdot 10^{-9} \mathrm{~K} \pi}=10^{4} \frac{\mathrm{H}}{\kappa \pi} .
$$

Досягнення сучасної електроніки дали змогу створити спеціальні прилади для вимірювання напруженості електричних полів. Вони дають можливість проводити прямі вимірювання, коли результати вимірювання відразу виводяться на індикатор чи дисплей (мал. 1.6).

Мал. 1.4. Заряgжена кулька віgштовхуеться Big однойменно заряgженої кулі

Мал. 15. Сили, які gіють на заряgжену кульку в електричному полі

Мал. 1.6. Лабораторний вимірювач напруженості електричного поля

Пряме вимірювання напруженості електричного поля дає змогу заздалегідь розрахувати можливу дію поля в даній точці на будь-яке заряджене тіло:

$$
\vec{F}=Q \vec{E} .
$$

Якщо в усіх точках поля на певне заряджене тіло діє однакова сила, то в цих точках і напруженість поля буде однакова. Таке поле називають однорідним.

Якщо напруженість у різних точках поля має різні значення, то це поле називають неоднорідним.

1. Яку властивість електричного поля описує напруженість?
2. Яку фізичну величину називають напруженістю електричного поля?
3. Які одиниці вимірювання напруженості електричного поля?
4. які переваги прямих вимірювань напруженості електричного поля перед непрямими?
5. Для чого вимірюють напруженість електричного поля?
6. Як розрахувати силу, що діє в електричному полі на заряджене тіло?
7. Яке електричне поле називають однорідним? неоднорідним?

Вправа 1

1. Модуль напруженості електричного поля в точці, де перебуває тіло, заряд якого 0,2 мкКл, дорівнюе $8 \frac{\mathrm{H}}{\mathrm{K} л}$. Яке значення електричної сили, що діє на це тіло?
2. На тіло, яке має заряд $6 \cdot 10^{-8} \mathrm{~K}$, діє сила $1,2 \cdot 10^{-5} \mathrm{H}$. Яка напруженість електричного поля в цій точці?
3. У певній точці на тіло із зарядом 4 мКл діє електрична сила 0,6 мкН. Яка напруженість електричного поля в цій точці?
4. Кулька масою 5 г має заряд $2 \cdot 10^{-9} \mathrm{~K}$. 3 яким прискоренням вона буде рухатися в однорідному електричному полі з напруженістю $3 \cdot 10^{4} \frac{\mathrm{H}}{\mathrm{K} л}$, якщо дія сили тяжіння буде компенсована?
5. Електрон під дією лише однорідного електричного поля напруженістю $182 \frac{\mathrm{H}}{\mathrm{K}_{\text {л }}}$ рухається з прискоренням. Визначити прискорення електрона.

6*. В однорідному електричному полі, утвореному двома вертикальними паралельними пластинками, розмістили кульку масою 2 г, підвішену на тонкій нерозтяжній і непровідній нитці. Кульці надали заряду 10^{-6} Кл. Вйзначити напружеwww.testosvit.com

ність електричного поля, якщо нитка відхилилася на 30° від вертикалі.

7*. Яку відстань пролетить електрон в однорідному електричному полі напруженістю $200 \frac{\mathrm{H}}{\mathrm{K}}$ до повної зупинки, якщо він влітає в поле з початковою швидкістю $5 \cdot 10^{5} \frac{\mathrm{M}}{\mathrm{c}} \mathrm{y}$ напрямі ліній напруженості поля?

§ 3. Принцип суперпозиціІ електричних полів

Характерною особливістю електричного поля є те, що в одній точці простору можуть бути одночасно поля різних джерел і різного походження. При цьому кожне з них зберігає свої особливі характеристики і жодне з них не змінюеться під впливом іншого поля.

Нехай у деякій точці простору A міститься тіло, що має поитивний заряд Q_{1} (мал. 1.7).
Якщо в довільну точку B внесемо точкове тіло з позитивним зарядом Q_{0}, то на нього діятиме сила F_{1} як результат взаемодії тіла B з полем тіла A.

У довільну точку C внесемо тепер тіло із зарядом Q_{2} (мал. 1.8). Його поле діятиме на тіло B із силою F_{2}. Жодної зміни в значенні сили F_{1} не відбудеться. Але з механіки відомо, що коли на тіло діє кілька сил, то їхню дію можна замінити дією рівнодійної (мал. 1.9).

У випадку кількох тіл, які е джерелами електричного поля,

$$
\vec{F}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\ldots+\vec{F}_{n} .
$$

Мал. 1.7. Сили, які діють на точкове заряяжене тіло в електричному полі

Мал. 1.8. Cuли, які gіють на точкове заряджене тіло в полі gвох електрично заряgжених тіл
www.testosvit.com

Якщо праву і ліву частини рівності поділити на значення електричного заряду, то одержимо

$$
\frac{\vec{F}}{Q}=\frac{\vec{F}_{1}}{Q_{1}}+\frac{\vec{F}_{2}}{Q_{2}}+\frac{\vec{F}_{3}}{Q_{3}}+\ldots+\frac{\vec{F}_{n}}{Q_{n}}
$$

або

$$
\vec{E}=\vec{E}_{1}+\vec{E}_{2}+\vec{E}_{3}+\ldots+\vec{E}_{n},
$$

де \vec{E} - напруженість поля усіх заряджених тіл; $\vec{E}_{1}, \vec{E}_{2}, \vec{E}_{3} \ldots$ напруженості полів кожного з тіл.

Отже, при розрахунках взаємодії зарядженого тіла з електричними полями багатьох тіл можна користуватися поняттям напруженості «сумарного* електричного поля. Цей висновок формулюється як принцип суперпозиції полів: напруженість електричного поля кількох заряджених тіл у будьякій точці дорівнює векторній сумі напруженостей полів окремих тіл у цій точці:

$$
\vec{E}=\sum_{n=1}^{\infty} \vec{E}_{n} .
$$

Напруженість електричного поля кількох заряджених тіл у будь-якій точці дорівнює векторній сумі напруженостей полів окремих тіл у цій точці.

Задача. У вершинах гострих кутів прямокутного рівнобедреного трикутника з катетом завдовжки 10 см знаходяться маленькі кульки із зарядами +1 мкКл $\mathrm{i}+1,5$ мкКл. Яка сила діє на кульку, що має заряд +1 мкКл і розміщена у вершині прямого кута?

Дано:
$Q_{1}=1$ мкКл,
$Q_{2}=1,5$ мкКл, $Q_{3}=1$ мкКл, $a=10 \mathrm{~cm}$.
C - ?

Розв'язання

Третя кулька із зарядом Q_{3} знаходиться одночасно в полі заряду Q_{1} і Q_{2}. Тому на цю кульку діють відповідно сили

$$
\vec{F}_{1}=Q_{3} \cdot \vec{E}_{1} ; \vec{F}_{2}=Q_{3} \cdot \vec{E}_{2} .
$$

Врахувавши, що для поля точкового тіла справджується закон Кулона $F=k \frac{Q_{1} \cdot Q_{2}}{r^{2}}$, маємо $F_{1}=k \frac{Q_{3} \cdot Q_{1}}{a^{2}} ; F_{2}=k \frac{Q_{3} \cdot Q_{2}}{a^{2}}$.

Рівнодійна цих сил є геометричною сумою векторів \vec{F}_{1} і \vec{F}_{2} (мал. 1.10).

Модуль рівнодійної визначається з паралелограма сил:

$$
F_{3}=\sqrt{F_{1}^{2}+F_{2}^{2}} .
$$

Звідси $F_{3}=\frac{k \cdot Q_{3}}{a^{2}} \sqrt{Q_{1}^{2}+Q_{2}^{2}}$.
Підставивши значення фізичних величин, одержимо

$$
F_{3}=1,6 \mathrm{H} .
$$

Відповідь: сила, що діє на кульку із зарядом Q_{3}, дорівнюе $1,6 \mathrm{H}$.

Мал. 1.10. Рівноgiŭна сил

1. Як формулюється принцип суперпозиції полів?
2. Яку властивість полів покладено в основу принципу суперпозиціі?
3. Як розуміти вислів «сумарне" електричне поле?

Вправа 2

1. Електричне поле утворене накладанням двох однорідних полів з напруженостями $300 \mathrm{~B} / \mathrm{m}$ і $400 \mathrm{~B} / \mathrm{m}$. Визначити модуль напруженості результуючого поля, якщо силові лінії: a) напрямлені в один бік; б) протилежно напрямлені; в) взаемно перпендикулярні.
2. Визначити напруженість поля в точці, розміщеній посередині між точковими тілами із зарядами $+2 \cdot 10^{-9}$ Кл і $-4 \cdot 10^{-9}$ Кл, які розміщені на відстані 10 см одне від одного.
3. Два точкові тіла із зарядами $-3 \cdot 10^{-7}$ Кл i $+1,2 \cdot 10^{-6}$ Кл віддалені на 12 см одне від одного. У якій точці напруженість електричного поля цих тіл дорівнює нулю?
4. Два точкові тіла із зарядами $+2 \cdot 10^{-8}$ Кл i $+1,6 \cdot 10^{-7}$ Кл розміщені на відстані 5 см одне від одного. Знайти напруженість електричного поля в точках, які віддалені від першого заряду на 3 см і від другого - на 4 см.
5. У двох протилежних вершинах квадрата зі сторонами 30 см знаходяться маленькі кульки із зарядами по $2 \cdot 10^{-7}$ Кл. Знайти напруженість поля в двох інших вершинах квадрата.
6. Два точкових тіла, які мають заряди $+16 \cdot 10^{-6}$ Кл і $-24 \cdot 10^{-6}$ Кл, перебувають на відстані 10 cm одне від одного. Визначити напруженість поля в точці, що знаходиться на відстані 4 см від першого тіла на прямій, яка сполучає ці тіла.

7*. Три маленькі кульки з однаковими позитивними зарядами $+Q$ розташовані у вершинах рівностороннього трикутника. Сторона трикутника дорівнює a. Визначити напруженість поля у вершині правильного тетраедра, для якого цей трикутник е основою.

§ 4. Провіgники в електричному полі

Дія електричного поля поширюеться на всі об'єкти - від макроскопічних тіл і до найдрібніших частинок, що входять до складу речовини: електронів, протонів, йонів. Власне взаємодія цих частинок з електричним полем визначає електричні властивості речовини в цілому.

Розглянемо взаємодію електричного поля з найпоширенішим класом провідників - металами.

Електричні властивості речовини визначаються наявністю в ній електронів, протонів, йонів.

Візьмемо два металеві циліндри і кожен з них з'єднаємо зі стрижнем заземленого електрометра. Розмістимо циліндри між паралельними металевими пластинами так, щоб вони, дотикаючись лише один до одного, утворювали одне тіло (мал. 1.11). Щойно зарядимо пластини різнойменними зарядами, стрілки електрометрів відхиляться і засвідчать появу зарядів на циліндрах.

Явище появи зарядів на провідниках під дією електричного

 поля називають електростатичною індукцією.Якщо розрядити пластини, то зникнуть заряди і на циліндрах. Отже, поява зарядів на циліндрах пов'язана з дією електричного поля.

Явище появи зарядів на провідниках під дією електричного поля називають електростатичною індукцією.

Мал. 1.11. Електростатична індукція

Мал. 1.12. Металеві цилінgри заряguлися в електричному полі різнойменно

Повторимо попередній дослід. Але після того, як електрометри покажуть наявність зарядів на кінцях провідника, розділимо циліндри і розрядимо пластини. Електрометри й далі будуть показувати наявність зарядів на кожному із циліндрів (мал. 1.12). Дослідження зарядів на циліндрах за допомогою ебонітової палички, потертої хутром, покаже, що циліндри заряджені різнойменно.

Подібне явище спостерігається при електризації всіх металевих тіл в електричному полі. Якщо до металевої кульки, попередньо не зарядженої, під-

Мал. 1.13. Взаємодія металевої кульки і заряgженої палички нести заряджену ебонітову чи скляну паличку, то кулька почне притягуватися до неї. Це можна пояснити тим, що під дією електричного поля зарядженої палички в кульці відбудеться перерозподіл заряджених частинок так, що на частині, ближчій до палички, буде надлишок заряджених частинок, знак яких протилежний до знака заряду палички (мал. 1.13).

Наслідки явища електростатичної індукції, за якої всередині металевого провідника напруженість електричного поля дорівнює нулю, використовують при виготовленні екранів, які захищають тіла від дії електричних полів (мал. 1.14). Металеві заземлені екрани застосовують у лабораторіях для захисту дослідників під час проведення дослідів з високими напругами.

За допомогою металевих екранів відділяють від небажаного взаємного впливу різні деталі радіоелектронних пристроїв, де вони розміщені близько один до одного.

Мал. 1.14. У просторі, обмеженому металевим екраном, напруженість електричного поля gорівнюе нулю

1. Що відбувається при внесенні провідника в електричне поле?
2. Яке явище називають електростатичною індукцією?
3. Як зарядити два тіла різнойменно, не доторкуючись до них зарядженим тілом?
4. Чому в провіднику напруженість електричного поля дорівнює нулю?
5. Яке призначення металевих екранів?

§ 5. Діелектрики в електричному полі

Закріпимо на стрижні електрометра металевий диск і надамо йому певного заряду. Відхилення стрілки електрометра підтвердить наявність заряду на диску (мал. 1.15).

Піднесемо до диска пластину з діелектрика. Покази стрілки електрометра зменшаться (мал. 1.16).

Мал. 1.15. Металева пластина на електрометрі має електричний заряg

Мал. 1.16. Піgнесення gіелектричної пластини gо заряgженої пластини зменшує покази стрілки електрометра

Аналогічного ефекту досягнемо й тоді, коли до диска піднесемо заряджене тіло, знак заряду якого протилежний до того, що має диск. Отже, під дією електричного поля диска пластина заряджається.

Діелектрики, на відміну від провідників, не мають вільних носіїв зарядів. Утворюючи молекули, атоми діелектрика обмінюються електронами, але не втрачають з ними зв'язку. Якщо такий діелектрик помістити в електричне поле, то змін зазнають самі молекули. Ці зміни мають електричну природу, але для різних діелектриків вони будуть різними. Це залежить від будови молекул діелектрика.

Мал. 1.17. Полярні молекули

Частина діелектриків має так звані полярні молекули, у яких позитивно і негативно заряджені частинки зміщені відносно центра молекули (мал. 1.17).

Мал. 1.18. Оріентація полярних молекул в gіелектрику за віgсутності зовнішнього електричного поля

Мал. 1.19. Орієнтація полярних молекул giелектрика в електричному полі

За відсутності електричного поля зовнішнього походження всі молекули розміщені хаотично (мал. 1.18) і здійснюють тепловий коливальний рyх.

При внесенні діелектрика в електричне поле відбувається орієнтація молекул уздовж ліній напруженості (мал. 1.19). Отже, в діелектрику з'являеться певна впорядкованість у розміщенні молекул таким чином, що в одному напрямі переважають негативно заряджені частинки, а в іншому - позитивно.

Такий стан діелектрика називається поляризацією.
Якщо діелектрик має неполярні молекули, то під дією електричного поля електрони в атомах і їхні орбіти зміщуються проти напряму вектора напруженості й утворюють диполі, орієнтовані певним чином в електричному полі. Унаслідок такої *деформації* атомів і молекул діелектрик також поляризуеться.

Поляризація діелектриків приводить до появи в них додаткового електричного поля напруженістю \vec{E}^{\prime}, напрям якої буде протилежним напряму вектора напруженості \vec{E}_{0} зовнішнього електричного поля (мал. 1.20).

Відповідно напруженість електричного поля в діелектрику буде меншою, ніж напруженість зовнішнього поля.

$$
\vec{E}=\vec{E}_{0}-\vec{E}^{\prime}, \vec{E}<\vec{E}_{0} .
$$

Отже, діелектрик послаблює електричне поле. Внаслідок того, що в різних діелектриків це послаб-

Мал. 120. Напруженість електричного поля в gieлектрику менша за напруженість зовнішнього поля

лення різне, для характеристики їх електричних властивостей користуються фізичною величиною, яка називається вiдносною діелектричною проникністю, або просто діелектричною проникністю \&. Вона показує, у скільки разів напруженість електричного поля в діелектрику менша, ніж поза ним:

$$
\varepsilon=\frac{E_{0}}{E}
$$

де ε - діелектрична проникність; E_{0} - модуль напруженості електричного поля поза діелектриком; E - модуль напруженості електричного поля в діелектрику.

Вплив речовини на електричне поле приводить до зміни сили, яка діє на електричний заряд. 3 означення

$$
E=\frac{E_{0}}{\varepsilon}, \quad Q E=\frac{Q E_{0}}{\varepsilon} .
$$

3 останнього випливає, що сила, яка діє на електричний заряд у діелектрику, менша, ніж у вакуумі:

$$
F=\frac{Q E_{0}}{\varepsilon}<F_{0}
$$

Діелектрична проникність для різних діелектриків різна, ї значення для деяких діелектриків наведено в таблиці.

Таблиця
Діелектрична проникність різних речовин (за нормальних умов)

Речовина	Діелектрична проникність
Повітря	1,000594
Азот (газ)	1,00058
Гас	2,1
Кварц плавлений	3,75
Кераміка (СаТіО ${ }_{3}$)	$150 \ldots 165$
Скло	$8 \ldots 11$
Ебоніт	3
Картон	4
Парафін	2
Слюда	6
Віск бджолиний	3
Сегнетова сіль	10000
Трансформаторна олива	$2,2 \ldots 2,5$
Вода	81

Значення діелектричної проникності можуть суттєво змінюватися навіть за незначної зміни хімічного складу речовини.

Діелектрична проникність суттєво залежить від хімічного складу І внутрішньої структури речовини.

Завдяки цьому створені численні речовини з унікальними електричними властивостями для застосування в електронній і електротехнічній галузях виробництва.

Серед них чільне місце носідають електрети - електричні аналоги постійних магнітів.

> Діелектрики, які зберігають стан поляризаціЇ за відсутності стороннього поля, називаютть електретами.

Електрети - електричні аналоги постійного магніту.

Якщо більшість діелектриків втрачають поляризацію, коли зникає зовнішнє поле, то електрети зберігають стан поляризації тривалий час. На основі цих властивостей електретів створені високоефективні електретні мікрофони, елементи пам'яті для комп'ютерної техніки тощо.

Відсутність заліза в цих пристроях робить ïх легкими і технологічними у виробництві.

Рідкі кристали змінюють свої фізичні властивості під дією електричного поля.

У сучасній техніці широкого поширення набули так звані рідкі кристали. Маючи полярну структуру молекул, вони в електричному полі помітно змінюють свої фізичні властивості.

Так, якщо рідина, що належить до класу рідких кристалів і має полярні молекули, у звичайному стані повністю прозоpa, то накладання на неї електричного поля спричиняє зміни в прозорості. Це явище вам трапляється завжди, коли спостерігаєте за дисплеєм свого мікрокалькулятора. Схему будови комірки такого дисплея показано на малюнку 1.21 .

Рідкий кристал 5 розміщуеться в спеціальній комірці між двома плоскопаралельними прозорими плас-

Мал. 1.21. Буgова ріgкокристалічної електрооптичної комірки

тинами 2 , на внутрішні поверхні яких нанесено прозорі електроди 3. Відстань між електродами становить десятки мікрометрів і задається діелектричними прокладками 4, розміщеними між пластинами. На зовнішніх поверхнях пластинок розміщуються поляроїдні плівки 1. (Про них ви дізнаєтеся пізніше при вивченні оптики). Якщо комірка повинна працювати у відбитому світлі, то на одну з ї поверхонь наносять дзеркальне покриття. За відсутності електричного поля між пластинами молекули рідини розміщено паралельно пластинам, і рідина не пропускає світла. Уся комірка має темний колір. Прикладання до електродів напруги спричиняє виникнення між ними електричного поля, яке змінює орієнтацію молекул. Унаслідок цього комірка стане прозорою. У випадку, коли один з електродів виготовлено з окремих сегментів, за допомогою електронної схеми можна відтворювати різні зображення - букви, цифри, геометричні фігури тощо.

1. Яка особливість будови діелектриків?
2. Яке явище спостерігається при внесенні діелектрика в електричне поле?
3. Чому за звичайних умов діелектрик не має електричного поля?
4. Що відбувається при поляризації діелектриків?
5. Як змінюеться напруженість електричного поля в діелектрику при його поляризаціі?
6. Що таке діелектрична проникність речовини?
7. Чому діелектрична проникність різних речовин має різні значення?
8. Які властивості електретів?
9. Чому рідкі кристали змінюють фізичні властивості в електричному полі?

§ 6. Закон Кулона

Експериментально підтверджено, що заряджені тіла взаємодіють між собою - притягуються або відштовхуються. Кількісно така взаемодія підпорядкована закону Кулона. У попередніх параграфах ми з'ясували, що кожне заряджене тіло має електричне поле. Отже, якщо є електричне поле, то можна з упевненістю стверджувати наявність зарядженого тіла, якому належить це поле. Якщо поруч одне біля одного є два заряджені тіла з електричними зарядами Q_{1} і Q_{2}, то одне з них перебуває в електричному полі іншого тіла і на нього діє сила

$$
\vec{F}_{1}=Q_{1} \vec{E}_{2},
$$

де Q_{1} - заряд першого тіла; \vec{E}_{2} - напруженість поля другого тіла. На друге тіло, відповідно, діятиме сила

$$
\vec{F}_{2}=Q_{2} \vec{E}_{1},
$$

де \boldsymbol{Q}_{2} - заряд другого тіла; \vec{E}_{1} - напруженість поля першого тіла.

Якщо ці тіла незначні за розміром (точкові), то $E_{1}=k \frac{Q_{1}}{r^{2}}$, де k - коефіцієнт пропорційності, що дорівнює:

$$
\begin{gathered}
E_{2}=k \frac{Q_{2}}{r^{2}} ; \\
k=9 \cdot 10^{9} \frac{\mathrm{H} \cdot \mathrm{~m}^{2}}{\mathrm{~K}^{2}} .
\end{gathered}
$$

Відомий французький фізик Ш.О. Кулон у 1785 р. експериментально встановив один з фундаментальних законів електродинаміки:

сила, яка діє на нерухоме точкове тіло з електричним за$p s д о м ~ Q_{1} y$ полі іншого нерухомого точкового тіла з електричним зарядом Q_{2}, пропориійна добутку значень їх зарядів і обернено пропорційна квадрату відстані між ними:

$$
F=k \frac{Q_{1} \cdot Q_{2}}{r^{2}}
$$

У формулі для розрахунку сили взаємодії записано значення зарядів обох тіл. Тому можна зробити висновок, що за модулем обидві сили рівні. Проте за напрямом - вони протилежні.

Якщо заряди тіл однойменні, тіла відштовхуються (мал. 1.22).

Якщо заряди тіл різнойменні, то тіла притягуються (мал. 1.23). Остаточно можна записати:

$$
\vec{F}_{1}=-\vec{F}_{2} .
$$

Якщо заряджені тіла знаходяться в діелектрику, то сила взаємодії залежатиме від діелектричної проникності цього діелектрика:

$$
F=k \frac{Q_{1} \cdot Q_{2}}{\varepsilon r^{2}},
$$

де ε - діелектрична проникність середовища.

Мал. 122. Сили, які gіють на однойменно заряgжені тіла, мають протилежні напрями

Мал. 1.23. Сили, які gіють на різнойменно заряgжені тіла, мають протилежні напрями

Закон Кулона є одним 3 фундаментальних законів природи. На ньому ґрунтується електродинаміка, і не було жодного випадку, коли б він не діяв. Існуе едине обмеження, що стосуеться дії закону Кулона на різних відстанях. Вважається, що закон Кулона діє на відстанях, більших за 10^{-16} м і менших за кілька кілометрів.

Задача. Дві однакові кульки підвішено на нитках завдовжки 1 м в одній точці. Кульки мають однакові заряди $3 \cdot 10^{-7}$ Кл і розходяться на відстань 10 cm . Який натяг кожної нитки?

Дано:
$l=1 \mathrm{~m}$,
$Q=3 \cdot 10^{-7}$ Кл, $r=10 \mathrm{~cm}$.

$$
F_{\text {тр }}-?
$$

Розв'язання
На кожну кульку діють три сили: сила тяжіння $m \vec{g}$, сила пружності $\vec{F}_{\text {пр }}$ i електрична сила \vec{F} (мал. 1.24).

Виходячи з умови нерухомості кульки, можна записати рівняння

$$
\vec{F}_{\mathrm{np}}+\vec{F}+m \vec{g}=\mathbf{0} .
$$

Спроектувавши вектори на вісь $O X$, матимемо

$$
-F_{\text {пр }} \sin \alpha+F=0 .
$$

Звідси $F_{\text {пр }}=\frac{F}{\sin \alpha}$.
Оскільки $\sin \alpha=\frac{r}{2 l}$, а $F=k \frac{Q^{2}}{r^{2}}$, то

$$
F_{\mathrm{up}}=k \frac{Q^{2} 2 l}{r^{3}} .
$$

Підставимо значення величин:

$$
F_{\text {пр }}=\frac{9 \cdot 10^{9} \frac{\mathrm{H} \cdot \mathrm{~m}^{2}}{\mathrm{Kл}^{2}} \cdot 9 \cdot 10^{-14} \mathrm{Kл} \cdot 2 \cdot 1 \mathrm{~m}}{10^{-3} \mathrm{~m}^{3}}=1,6 \mathrm{H} .
$$

Вiдповiдь: сила натягу нитки сгановить $1,6 \mathrm{H}$.

Мал. 124. До заgачі

1. Як відбувається взаємодія між зарядженими тілами?
2. Чому можна говорити про взаємодію між зарядженими тілами?
3. Які обмеження існують у формулюванні закону Кулона щодо взаємодіючих тіл?
4. Як формулюеться закон Кулона?
5. Чи враховує закон Кулона дію навколишнього середовища на взаємодіючі тіла?
6. Чи є обмеження щодо області дії закону Кулона?

Вправа 3

1. Дві металеві кульки, кожна з яких має заряд $10^{-7} К л$, перебувають на відстані 0,1 м одна від одної. Знайти силу взаємодії між ними.
2. 3 якою силою взаємодіють дві кульки із зарядами $0,66 \cdot 10^{-7}$ Кл і $1,1 \cdot 10^{-5}$ Кл на відстані $3,3 \mathrm{~cm}$?
3. Як зміниться сила взаємодії між двома точковими зарядженими тілами, якщо значення кожного заряду збільшиться в 4 рази, а відстань між ними зменшиться удвічі?
4. Знайти силу притягання між ядром атома Гідрогену i електроном. Радіус атома Гідрогену 0,5 10^{-8} см. Заряд ядра дорівнює за значенням і протилежний за знаком до заряду електрона.
5. Два точкові заряджені тіла мають заряди $+3 \cdot 10^{-7}$ Кл і $+2 \cdot 10^{-7}$ Кл та перебувають на відстані 10 см одне від одного. Де потрібно розмістити третє тіло, щоб воно перебувало в рівновазі?
6. Маленьку кульку масою 0,3 г, яка має заряд $3 \cdot 10^{-7}$ Кл, підвішено на тонкій непровідній нитці. На яку відстань потрібно піднести знизу другу кульку з однойменним зарядом $5 \cdot 10^{-8}$ Кл, щоб натяг нитки зменшився вдвічі?
7. На якій відстані один від одного точкові тіла з зарядами 1 нКл і 3 нКл взаємодіють із силою 9 мН?

8*. Дві маленькі кульки однакового радіуса і маси підвішено в повітрі на нитках однакової довжини в одній точці. Коли кульки мали однойменні заряди по $40 \cdot 10^{-8}$ Кл, нитки розійшлися на кут 60°. Знайти масу кожної кульки, якщо відстань від точки підвісу до центрів кульок становить 20 cm .

9*. Сила тяжіння між двома зарядженими кульками масою по 1 г урівноважена електричною силою відштовхування. Вважаючи заряди кульок однаковими, знайти їх значення.
10. У скільки разів зміниться сила взаємодії двох заряджених тіл, якщо їхні заряди подвояться, а відстань між ними зменшиться втричі і при цьому їх перемістили з повітря в гас?

§ 7. Робота в електричному полі

Розглянемо точкове тіло, яке має позитивний електричний заряд Q_{0} i перебуває в однорідному електричному полі між двома паралельними пластинами. Пластини мають різнойменні заряди і розміри, набагато більші за відстань між ними (мал. 1.25).

На тіло, яке перебувае в точці A, діє електрична сила

$$
\vec{F}_{\mathrm{e}}=Q \vec{E},
$$

яка має стале значення і напрям. Тіло віддалене від лівої пластини на відстань l_{1}.

Нехай тіло починає рухатися з точки A в точку B під дією електричної сили $\overrightarrow{\mathrm{F}}_{\mathrm{e}}$. Ця сила виконуватиме роботу

$$
A=F_{\mathrm{e}} s \cos \alpha .
$$

У точці B тіло буде на відстані l_{2} від лівої пластини. Модуль переміщення $s=A B$.
24 Побудуемо проекцію переміщення на напрям дії сили. На малюнку 1.26 їі зображено відрізком $A C$.

3 правил побудови проекцій у нашому випадку можна зробити висновок, що знайдена точка C, як і точка B, перебуває на відстані l_{2} від лівої пластини.

Враховуючи останне, можна записати, що $s \cos \alpha=l_{1}-l_{2}$.
Отже, $A=F_{\mathrm{e}}\left(l_{1}-l_{2}\right)=Q_{0} E\left(l_{1}-l_{2}\right)$.
Така сама робота буде виконана і при переміщенні зарядженого тіла з точки A в точки B чи E. Адже для цих переміщень також

$$
s \cos \alpha=\left(l_{1}-l_{2}\right) .
$$

Подібний результат буде і якщо заряджене тіло переміщуватиметься в точку C з інших точок, віддалених від лівої пластини на відстань l_{1}.

Мал. 125. Переміщення заряgженого тіла в електричному полі

Мал. 1.26. До розрахунку роботи електричного поля

Робота з переміщення зарядженого тіла в електричному полі не залежить від шляху, а залежить від положення початкової і кінцевої точок руху.

Подібний висновок можна зробити і для руху тіла довільною траекторією. Якщо тіло описуватиме криві, що починаються в точці A і закінчуються в точці B (мал. 1.27), то модуль пе̂реміщення s буде од-

Мал. 127. Переміщення не залежить вія форми траекторії ним і тим самим.

Отже, робота з переміщення зарядженого тіла в електричному полі не залежить від форми траєкторї руху.

Робота з переміщення зарядженого тіла в електричному полі не залежить від форми траєкторії руху, а визначається положенням початкової і кінцевої точок руху.
Якщо в процесі руху в електричному полі заряджене тіло 25 описуе замкнуту траєкторію, тобто повертається в початкову точку, то робота електричного поля дорівнює нулю. Адже, коли $l_{1}=l_{2}$, то

$$
A=Q_{0} E\left(l_{1}-l_{1}\right)=0 .
$$

При переміщенні зарядженого тіла в електростатичному полі замкнутою траєкторією робота дорівнює нулю.

Зроблені висновки подібні до висновків щодо роботи сили тяжіння, яка розглядалася в механіці. Зокрема,

$$
A=m g\left(h_{1}-h_{2}\right),
$$

а при $h_{1}=h_{2}$

$$
A=m g\left(h_{1}-h_{1}\right)=0 .
$$

Поля, у яких робота не залежить від форми траєкторії і визначається лише положенням тіла в початковий і кінцевий моменти руху, називаються потенціальними.

Отже, заряджене тіло в електростатичному полі має потенціальну енергію так само, як і тіло певної маси в полі тяжіння.

Заряджене тіло в електричному полі має потенціальну енерrio.

Задача. Відстань між паралельними пластинами 5 см, напруженість електричного поля між ними $\mathbf{1 0}^{2} \mathrm{H} /$ Кл. Електрон

летить уздовж силової лінії від однієї пластини до другої без початкової швидкості. Яку швидкість матиме електрон наприкінці шляху?

Дано:

> Розв'язання
$l=5 \cdot 10^{-2} \mathrm{M}$, $E=10^{2} \mathrm{H} /$ Кл, $m_{\mathrm{e}}=9,1 \cdot 10^{-31} \mathrm{Kr}$, $e=1,6 \cdot 10^{-19}$ Кл.

В електричному полі на електрон діє сила, яка виконує роботу і змінює кінетичну енергію електрона. За законом збереження енергії ця зміна дорівнює виконаній роботі:

$$
\begin{equation*}
\Delta W=A . \tag{1}
\end{equation*}
$$

Оскільки початкова швидкість електрона дорівнює нулю, то наприкінці руху зміна його кінетичної енергіі

$$
\begin{equation*}
\Delta W=\frac{m_{\mathrm{e}} v^{2}}{2} \tag{2}
\end{equation*}
$$

Робота, виконана електричною силою,

$$
\begin{equation*}
A=e E l . \tag{3}
\end{equation*}
$$

Відповідно до (1), (2) і (3) одержимо

$$
\frac{m_{\mathrm{e}} v^{2}}{2}=e E l .
$$

Звідси

$$
v=\sqrt{\frac{2 e E l}{m_{\mathrm{e}}}} .
$$

Підставивши значення фізичних величин і провівши розрахунки, отримаємо

$$
v=\sqrt{\frac{2 \cdot 1,6 \cdot 10^{-19} \mathrm{~K} \pi \cdot 10^{2} \frac{\mathrm{H}}{\mathrm{~K} \pi} \cdot 5 \cdot 10^{-2} \mathrm{M}}{9,1 \cdot 10^{-31} \mathrm{~K} \mathrm{\Gamma}}} \approx 1,33 \cdot 10^{7} \frac{\mathrm{~m}}{\mathrm{c}} .
$$

Biдповiдь: швидкість електрона наприкінці руху $1,33 \cdot 10^{7} \mathrm{~m} / \mathrm{c}$.

1. За яких умов в електричному полі виконується робота?
2. Від чого залежить робота в однорідному електричному полі?
3. Як довести, що робота в електричному полі не залежить від шляху?
4. Чому робота при русі зарядженого тіла замкнутою траєкторією в електричному полі дорівнює нулю?
5. Чому електростатичне поле потенціальне?

Вправа 4

1. Яку роботу виконує однорідне електростатичне поле напруженістю $50 \mathrm{H} /$ Кл при переміщенні тіла із зарядом 4 мкКл на 5 см у напрямі, який утворює кут 60° з напрямом лінії напруженості поля?
2. Яке значення електричного заряду тіла, якщо при його переміщенні на 10 см в однорідному електричному полі напруженістю $2 \cdot 10^{3} \mathrm{H} /$ Кл уздовж силової лінії виконано роботу $4 \cdot 10^{-3}$ Дж?

3*. Лінії напруженості однорідного електричного поля напруженістю $500 \mathrm{H} /$ Кл напрямлені вздовж осі $O X$ прямокутної системи координат. Визначити роботу з переміщення тіла з зарядом 4 мкКл з точки з координатами (2 m ; 1 м) у точку з координатами (3 м; 4 м).

4*. Частинка масою $10^{-9} \mathrm{kr}$ і зарядом 1 мкКл влітає в однорідне електричне поле з напруженістю $1000 \mathrm{H} /$ Кл перпендикулярно до ліній напруженості поля. Визначити роботу поля за першу мілісекунду.

5*. Електрон рухається в напрямі ліній напруженості однорідного електричного поля з напруженістю $120 \mathrm{H} /$ Кл. Яку відстань пролетить електрон до повної зупинки, якщо його початкова швидкість дорівнюе $100 \mathrm{kм} / \mathrm{c}$? За який час електрон пролетить цю відстань?

§ 8. Потенціал електричного поля

Електричні і гравітаційні взаемодії мають багато спільного. Зокрема, робота сили тяжіння і робота електричної сили виражаються схожими залежностями. Для сили тяжіння:

$$
A=m g h_{1}-m g h_{2} .
$$

Для електричної сили: $A=Q_{0} E l_{1}-Q_{0} E l_{2}=Q_{0} E\left(l_{1}-l_{2}\right)$.
Враховуючи, що при виконанні роботи відбувається зміна потенціальної енергії, можна зробити висновок, що заряджене тіло в електричному полі має потенціальну енергію

$$
W_{\mathrm{n}}=Q E l .
$$

Потенціальна енергія зарядженого тіла визначається як електричними характеристиками тіла (його заряд), так і характеристиками вибраної точки електричного поля - напруженість і координата. Зміна однієї з трьох характеристик спричиняє зміну потенціальної енергії тіла в цілому. Дослідимо одну з точок електричного поля з метою визначення ії www.testosvit.com

енергетичних характеристик. Для цього виконаємо уявні експерименти з точковим зарядженим тілом.

Нехай точкове тіло має заряд Q і перебуває в полі напруженістю E на відстані l від джерела поля. Його потенціальна енергія буде дорівнювати

$$
W_{\mathrm{r}}=Q E l .
$$

Збільшимо значення заряду в 2 рази. Його потенціальна енергія буде:

$$
W_{\mathrm{m} 1}=2 Q E l .
$$

Отже, потенціальна енергія тіла збільшиться в 2 рази. Будь-які зміни заряду тіла ведуть до відповідної зміни його потенціальної енергії. Але в кожному випадку відношення потенціальної енергії зарядженого тіла до його електричного заряду в даній точці поля залишатиметься сталим.

$$
\frac{W_{\mathrm{n}}}{Q}=E l .
$$

У цьому виразі відсутній заряд пробного тіла, тому отримане відношення і відповідна йому фізична величина характеризують лише дану точку електричного поля.

Фізична величина, яка є енергетичною характеристикою електричного поля $і$ дорівнюе відношенню потенціальної енергї зарядженого тіла в електричному полі до його заряду, називається потенціалом.

> Фізична величина, яка є енергетичною характеристикою електричного поля і дорівнює відношенню потенціальної енергії зарядженого тіла в електричному полі до його заря- ду, називається потенціалом: $\varphi=\frac{W_{\mathrm{n}}}{Q}$.

Для вимірювання потенціалу користуються одиницею, яка називається вольтом (B) на честь італійського вченого Алессандро Вольти.

> Алессандро Вольта (1745-1825) - італійський фізик і фізіолог, один із засновників учення про електричний струм. Досліджував питання утворення струму за дппомогою гальванічних елементів.

Використовуються також кратні і частинні одиниці потенціалу:

1 мілівольт $=1 \mathrm{mB}=10^{-3} \mathrm{~B}$;
1 мікровольт $=1$ мкB $=10^{-6^{\prime}}$ B;
www.testosvit.com

1 кіловольт $=1 \mathrm{\kappa B}=10^{3} \mathrm{~B}$;
1 мегавольт $=1 \mathrm{MB}=10^{6} \mathrm{~B}$.
Потенціал є скалярною величиною i не має напряму. Тому можна говорити, що навколо точкового зарядженого тіла $є$ безліч точок, у яких потенціали будуть однакові. Усі вони утворюють поверхню, яка називається еквіпотенціальною.

Якщо силові лінії створюють силовий "образ» поля, то еквіпотенціальні поверхні дають змогу засобами графіки зобразити енергетичну структуру електричного поля.

Мал. 128.
Еквіпотенціальні поверхні заряgженої кулі

Еквіпотенціальна поверхня - це геометричне місце точок однакових потенціалів.

Для поля точкового зарядженого тіла еквіпотенціальні поверхні є концентричними сферами (мал. 1.28).

Еквіпотенціальні поверхні - це не просто геометричні побудови. Вони відображають той факт, що при переміщенні зарядженого тіла еквіпотенціальною поверхнею робота не виконується - дорівнює нулю, оскільки потенціальна енергія тіла при цьому не змінюеться. Типовим прикладом еквіпотенціальної поверхні є поверхня провідника, усі точки якого мають однаковий потенціал.

1. Чому заряджене тіло в електричному полі має потенціальну енергію?
2. Від чого залежить потенціальна енергія зарядженого тіла в електричному полі?
3. Яку властивість поля характеризує потенціал?
4. Як визначається потенціал поля точкового зарядженого тіла?
5. Яка поверхня називається еквіпотенціальною?
6. Як будується еквіпотенціальна поверхня?
7. Які одиниці вимірювання потенціалу?
8. Яким приладом можна виміряти потенціал?

Вправа 5

1. Який потенціал поля точкового тіла з електричним зарядом 2 мкКл в точці, віддаленій від тіла на 3 м?
2. На відстані 30 м від відокремленого точкового тіла потенціал його електричного поля дорівнюе 3000 B . Визначити заряд цього тіла.
3. На відстані 4 м від відокремленого позитивно зарядженого точкового тіла потенціал електричного поля дорівнюе www.testosvit.com

100 B . Визначити модуль напруженості поля на відстані 5 м від тіла.

4*. Точкове тіло має заряд $1,5 \cdot 10^{-9}$ Кл і перебуває у вакуумі. На якій відстані одна від одної знаходяться дві еквіпотенціальні поверхні, потенціали яких відповідно дорівнюють 45 B i 30 B?

5*. У трьох вершинах квадрата зі стороною 4,5 м містяться маленькі кульки, які мають позитивні заряди по 0,1 мкКл кожна. Який потенціал електричного поля в четвертій вершині квадрата?

§ 9. Різниця потенціалів

Характеризуючи потенціальну енергію тіла, значення якої залежить від вибору нульового рівня, потенціал також не може мати єдиного значення і залежить від вибору нульового рівня енергії.

Так, потенціал точки поля визначається через напруженість електричного поля E і відстань l :

$$
\varphi=\frac{W_{\mathrm{n}}}{Q}=E l .
$$

Узявши до уваги, що робота електричного поля за означенням дорівнює зміні потенціальної енергї̈ з протилежним знаком, матимемо:

$$
\begin{gathered}
A=Q E l_{1}-Q E l_{2} . \\
A=Q\left(\varphi_{1}-\varphi_{2}\right)=Q \Delta \varphi .
\end{gathered}
$$

Звідси $\Delta \varphi=\varphi_{1}-\varphi_{2}=\frac{A}{Q}$.
Отже, різниця потенціалів дорівнює відношенню роботи з переміщення зарядженого тіла з однієї точки поля в іншу до значення заряду.

Фізична величина, яка характеризує енергетичний стан поля i дорівнює відношенню роботи з переміщення зарядркеного тіла з однієї точки поля в іншу до значення заряду, називається різницею потенціалів: $\Delta \varphi=\frac{A}{Q}$.

Для однорідного поля існує зв'язок між різницею потенціалів та напруженістю електричного поля:

$$
\varphi_{1}-\varphi_{2}=E\left(l_{1}-l_{2}\right) .
$$

Звідси

$$
E=\frac{\varphi_{1}-\varphi_{2}}{l_{1}-l_{2}}=\frac{\Delta \varphi}{\Delta l} .
$$

Останній вираз використовують для введення одиниці напруженості електричного поля. Зокрема, якщо $\Delta \varphi=1$ В і $\Delta l=1 \mathrm{~m}$, одержимо одйницю напруженості електричного поля $1 \mathrm{~B} / \mathrm{m}$.

Задача. Визначити зміну енергії і швидкості електрона, який пролітае в прискорювачі від точки з потенціалом φ_{1} до точки з потенціалом φ_{2}, якщо $\Delta \varphi=2 \cdot 10^{6} \mathrm{~B}$.

Дано:
$\Delta \varphi=2 \cdot 10^{6} \mathrm{~B}$, $Q=1,6 \cdot 10^{-19}$ Кл, $m=9,1 \cdot 10^{-31} \mathrm{kr}$.
$\Delta W_{\kappa}-? \Delta v-$?

Розв'язання
Кінетична енергія електрона змінюеться внаслідок того, що під час руху електрона виконується робота

$$
A=\Delta W_{\text {к }} .
$$

Врахувавши, що $\Delta W_{\text {к }}=\frac{m_{\mathrm{e}} v^{2}}{2}$ і $A=Q \Delta \varphi$, одержимо

$$
\frac{m(\Delta v)^{2}}{2}=Q \Delta \varphi .
$$

Отже, зміна кінетичної енергії $\Delta W_{\text {к }}=Q \Delta \varphi$, а зміна швидкості $\Delta v=\sqrt{\frac{2 Q \Delta \varphi}{m}}$.

За умовою задачі одержимо:

$$
\begin{aligned}
& \Delta W_{\kappa}=1,6 \cdot 10^{-19} \mathrm{~K} \pi \cdot 2 \cdot 10^{6} \mathrm{~B} \\
&=3,2 \cdot 10^{-13} \text { Дж, } \\
& \Delta v=\sqrt{\frac{2 \cdot 1,6 \cdot 10^{-19} \mathrm{~K} \cdot 2 \cdot 10^{6} \mathrm{~B}}{9,1 \cdot 10^{-31} \mathrm{\kappa r}}}=0,83 \cdot 10^{9} \mathrm{~m} / \mathrm{c} .
\end{aligned}
$$

Biдповiдь: зміна кінетичної енергії $3,2 \cdot 10^{-13}$ Дж, а швидкості $-0,83 \cdot 10^{9} \mathrm{~m} / \mathrm{c}$.

1. Чому незручно використовувати поняття потенціалу для розв'язування практичних задач?
2. Що називається різницею потенціалів?
3. Які одиниці вимірювання різниці потенціалів?
4. Яким приладом вимірюється різниця потенціалів?

Вправа 6

1. Яка різниця потенціалів між двома точками електричного поля, якщо при переміщенні між ними точкового тіла $з$ зарядом 0,012 Кл поле виконало роботу 0,36 Дж?
2. Тіло із зарядом $4,6 \cdot 10^{-6}$ Кл переміщуеться в полі між точками з різницею потенціалів 2000 B . Яка робота при цьому виконуеться?
3. Визначити зміну швидкості порошинки масою 0,01 г і із зарядом 5 мкКл, якщо вона пройде різницю потенціалів 100 B .
4. Як зміниться кінетична енергія електрона, що пройшов різницю потенціалів $10^{6} \mathrm{~B}$?
5. Маленька кулька із зарядом 2 мкКл закріплена в точці $(0 ; 0)$ прямокутної системи координат. Яку роботу здійснюе електричне поле при переміщенні порошинки із зарядом 1 мкКл з точки(2 м; 0) в точку ($0 ; 2$ м)?
6. Яку роботу потрібно виконати, щоб два точкові тіла, які мають заряди по $3 \cdot 10^{-6}$ Кл і знаходяться в трансформаторній оливі на відстані $0,6 \mathrm{~m}$, наблизити до $0,2 \mathrm{~m}$? В'язкість оливи не враховувати.
7. Що покаже електрометр, якщо пробну кульку, з'єднану довгим гнучким провідником із стрижнем заземленого електрометра, переміщувати поверхнею зарядженого провідника довільної форми?

§ 10. Електроемність

Усі тіла здатні накопичувати електричний заряд. З'ясуемо, від чого залежить ця їх властивість. Із цією метою зробимо дослід.

Закріпимо на стрижні електрометра металеву порожнисту

Мал. 129. Поступове заряяжання металевої кулі кулю з отвором і будемо ї заряджати за допомогою маленької кульки на ізоляційній ручці (мал. 1.29).

Для цього кулькою торкатимемося спочатку електродів джерела високої напруги, а потім - внутрішньої поверхні кулі. Електрометр покаже поступове збільшення іІ потенціалу. Отже, щоб збільшити потенціал кулі, потрібно їй надати певного заряду. Якщо простежити за показами електрометра, то можна помітити, що потенціал кулі зростає поступово, у міру збільшення заряду, перенесеного маленькою кулькою. Детальні і точні вимірювання показують, що потенціал металевої кулі пропорційний їі заряду (мал. 1.30). ,

Мал. 1.30. Залежність потенціалу кулі віg заряgу яля кулі меншого раgіуса

Мал. 1.32. Залежність потенціалу кулі віg заряgу яля кулі більшого розміру

Мал. 131. Заряgжання кулі
33

Замінимо тепер металеву кулю іншою, більшого діаметра, і повторимо дослідження залежності потенціалу кулі від наданого їй заряду (мал. 1.31).

Потенціал кулі буде також пропорційний значенню їі заряду, що можна відобразити відповідним графіком (мал. 1.32).

Зіставивши графіки, що ілюструють процес заряджання куль різного діаметра (мал. 1.30 і 1.32), побачимо, що вони мають різний нахил: перший графік буде крутішим, ніж другий. Це означає, що при однакових значеннях заряду кулі матимуть різні потенціали. Отже, геометричні розміри тіла визначають зв'язок між потенціалом і зарядом тіла. Щоб зарядити кулі до однакового потенціалу, другій кулі потрібно надати більшого заряду.

Потенціал кожної кулі пропорційний 7 ї заряду; коефіцієнт пропорційності для різних куль має різні значення.

Аналізуючи результати дослідів і відповідні графіки, можна зробити висновки:

1) потенціал кожної кулі прямо пропорційний їі заряду: $\varphi \sim Q$;
2) для різних тіл коефіцієнт пропорційності має різні значення.

Встановлено, що цей коефіцієнт для кожного тіла має цілком певні значення, які відображають здатність тіл накопичувати електричний заряд. Відношення електричного заряду, одержаного тілом, до його потенціалу було названо електроемністю:

$$
C=\frac{Q}{\varphi},
$$

де C - електроемність провідника; Q - заряд; φ - потенціал.
Для вимірювання електроємності у фізиці застосовують одиницю, названу фарад (Ф).

Тіло мае електроємність 1 фарад, якщо зі зміною його заряду на 1 кулон потенціал змінюється на 1 вольт:

$$
1 \Phi=\frac{1 К \pi}{1 \mathrm{~B}}
$$

Електроємність 1 фарад мають тіла, у яких зі зміною заряду на 1 кулон потенціал змінюється на 1 вольт.
1Φ - це досить велике значення електроємності. Наприклад, електроємність Землі, радіус якої 6400 км, становить усього $7 \cdot 10^{4}$ Ф. Тому в практиці використовуються одиниці електроємності, кратні фараду:

1 мікрофарад $=1$ мк $\Phi=10^{-6} \Phi$.
1 пікофарад $=1$ п $\Phi=10^{-12}$ Ф.
Задача. Дві кулі, електроємності яких 50 мкФ і 80 мкФ, а потенціали 120 В і 50 В відповідно, з'єднують дротом. Знайти потенціали куль після їх з'єднання.

\quad Дано:	Розв'яза
$C_{1}=50$ мк Φ,	Заряд кожної кулі відпо
$C_{2}=80$ мк,	$Q_{1}=C_{1} \varphi_{1}$,
$\varphi_{1}=120 \mathrm{~B}$,	$Q_{2}=C_{2} \varphi_{2}$.
$\varphi_{2}=50 \mathrm{~B}$.	
$\varphi-?$	

Після з'єднання куль відбудеться перерозподіл зарядів між ними так, що їх потенціали стануть однаковими. Відповідно до закону збереження електричних зарядів

Звідси

$$
Q_{1}+Q_{2}=Q_{1}^{\prime}+Q_{2}^{\prime}
$$

або

$$
C_{1} \varphi_{1}+C_{2} \varphi_{2}=C_{1} \varphi+C_{2} \varphi,
$$

$$
\varphi=\frac{C_{1} \varphi_{1}+C_{2} \varphi_{2}}{C_{1}+C_{2}} .
$$

www.testosvit.com

Підставивши значення величин, отримаемо:

$$
\varphi=\frac{50 \mathrm{~m} \mathrm{\kappa} \Phi \cdot 120 \mathrm{~B}+80 \mathrm{mK} \Phi \cdot 50 \mathrm{~B}}{50 \mathrm{mK} \Phi+80 \mathrm{mK} \Phi}=77 \mathrm{~B} .
$$

Biдnoвiдь: після з'еднання кулі матимуть потенціал 77 В.

1. Який зв'язок між зарядом і потенціалом провідника?
2. Яка фізична величина називається електроємністо?
3. Як обчислити електроємність окремого тіла?
4. Які одиниці вимірювання електроємності?

Вправа 7

1. Провідна кулька електризується до потенціалу $6 \cdot 10^{3}$ В зарядом $3 \cdot 10^{-8}$ Кл. Визначити електроємність кульки в повітрі.
2. Який заряд потрібно надати провіднику, щоб зарядити його до потенціалу 30 B , якщо його електроємність 150 пФ?
3. Який потенціал матиме металева кулька електроємністю $0,45 \cdot 10^{-11} п \Phi$, якщо на неї перенести заряд $1,8 \cdot 10^{-7}$ Кл?

4*. Дві металеві кулі мають ємності 10 пФ і 20 пФ і заряди відповідно $1,5 \cdot 10^{-8}$ Кл і $3 \cdot 10^{-8} \mathrm{Kл}$. заряди з однієї кулі на другу, якщо їх з'єднати провідником?

§ 11. Конgенсатор

Щоб визначити електроємність тіла, як і його потенціал, потрібно створити умови, у яких був би повністю відсутній вплив навколишніх тіл, оскільки вони впливають на досліджуване тіло, змінюючи його потенціал і електроємність.

Перевіримо це експериментально. Закріпимо на стрижні заземленого електрометра металеву кулю і надамо їй певного заряду. Стрілка електрометра відхилиться від положення рівноваги і покаже значення потенціалу кулі відносно землі. Піднесемо до кулі металеву пластину, з'єднану дротиною із землею (мал. 1.33).

Покази електрометра зменшаться. Оскільки заряд кулі в ході досліду не змінився, то зменшення потенціалу свідчить про збільшення електроємності кулі. Зміни потенціалу \mathbf{i}, відповідно, електроємності кулі також спостерігатимуться в разі зміни відстані між нею і пластиною.

Мал. 133. Заземлена металева пластина вгливає на емність кулі

Отже, визначаючи електроемність тіла, слід також враховувати розміщення інших навколишніх тіл. Оскільки практично це зробити важко, то на практиці використовують систему з двох або більше провідників довільної форми, розділених діелектриком. У такому разі електричні властивості такої системи провідників і діелектрика не залежать від інших тіл. Таку систему називають конденсатором. Найпростішою для вивчення і розрахунків є система з двох металевих пластин, розділених діелектриком.

Електроємність конденсатора, на відміну від електроємності окремо взятого тіла, визначається за різницею потенціалів між пластинами:

$$
C=\frac{\boldsymbol{Q}}{\varphi_{1}-\varphi_{2}}=\frac{\boldsymbol{Q}}{\Delta \varphi},
$$

де Q - заряд одніеї пластини; $\left(\varphi_{1}-\varphi_{2}\right)$ i $\Delta \varphi$ - різниця потенціалів між пластинами.

Слово конденсатор означає накопичувач, В електриці мають на увазі «накопичувач електричних зарядів".

Задача. Яку електроємність має конденсатор, якщо на його обкладках накопичується заряд 50 нКл при різниці потенціалів 2,5 кВ?

Дано:	Розв'язання		
$\begin{aligned} & Q=50 \text { нКл, } \\ & \Delta \varphi=2,5 \text { кВ. } \end{aligned}$	Використаємо конденсатора:	формулу	електроємності
$C-$?		$C=\frac{Q}{\Delta \varphi} .$	

Підставимо значення фізичних величин:

$$
C=\frac{50 \cdot 10^{-9} \mathrm{~K} \pi}{2 \cdot 5 \cdot 10^{3} \mathrm{~B}}=2 \cdot 10^{-11} \Phi=20 \mathrm{\Pi I} \Phi .
$$

Відповідь: електроємність конденсатора 20 пФ.

1. Яка будова конденсатора?
2. Яка основна властивість конденсатора?
3. Чому зовнішні тіла не впливають на електроемність конденсатора?
4. Які діелектрики застосовуються в сучасних конденсаторах?
5. Для чого застосовують конденсатори?

Вправа 8

1. Знайти електроемність конденсатора, якщо при його заряджанні до напруги 1,5 В він отримав заряд 30 нКл.
2. Який заряд знаходиться на кожній з обкладок конденсатора, якщо різниця потенціалів становить 1000 B , а електроемність конденсатора 3 мк Φ ?

3*. Конденсатор електроемністю 0,05 мкФ з'єднали з джерелом струму, внаслідок чого він отримав заряд 50 нКл. Визначити напруженість поля між пластинами конденсатора, якщо відстань між ними становить 0,5 мм.

4*. Визначити заряд пластини плоского конденсатора електроемністю 0,02 мкФ, якщо напруженість поля в конденсаторі $320 \frac{\mathrm{H}}{\mathrm{Kл}}$, а відстань між пластинами $0,5 \mathrm{~cm}$.

Перший конденсатор був створений у 1745 p . голландським ученим Пітером ван Мушенбруком, професором Лейденського університету. Проводячи досліди з електризацією тіл, він опустив провідник від кондуктора електричної машини в скляний графин з водою (мал. 1.34).

Пітер ван Мушенбрук (1692-1761) - голландський фізик; роботи присвячені електриці, теплоті, оптиці; винайшов перший конденсатор - лейденську банку і виконав з нею низку дослідів.

Випадково торкнувшись пальцем цього провідника, учений відчув сильний електричний удар. Пізніше рідину замінили металевими провідниками зсередини i ззовні банки і назвали такий конденсатор лейденською банкою. У такому вигляді вона проіснувала майже 200 років.

Набагато досконаліші конденсатори знайшли широке застосуван-

Мал. 134. 3 історії віякриття найпростішого конденсатора лейgенської банки

Мал. 135. Конденсатор змінної електроємності з повітряним gіелектриком

Мал. 136. Різні тuпи конденсаторів

ня в сучасних електротехніці і радіоелектронній техніці. Вони є в перетворювачах напруги (адаптерах), які подають постійну напругу для живлення електронних приладів, у радіоприймачах і радіопередавачах як елементи коливальних контурів чи складові різних функціональних схем електронної апаратури. У фотоспалахах конденсатори нагромаджують великий заряд, потрібний для роботи імпульсної лампи.

В електротехніці конденсатори забезпечують необхідний режим роботи електродвигунів, автоматичних і релейних приладів, ліній електропередач тощо.

У багатьох широкодіапазонних радіоприймачах конденсатори змінної електроємності (мал. 1.35) дають можливість плавно змінювати власну частоту коливального контура в процесі пошуку передачі певної радіостанціі.

Великого поширення набули конденсатори, електроємність яких можна змінювати електричним способом, ïх називають варікапами. Конструктивно це прилади, схожі на напівпровідникові діоди.

Конденсатори можуть бути плоскі, трубчасті, дискові. Як діелектрик у них застосовують парафінований папір, слюду, повітря, пластмаси, кераміку тощо (мал. 1.36). Завдяки штучним ізоляційним матеріалам у наш час створено конденсатори великої електроємності при незначних розмірах.

§ 12. Електроємність плоского конgенсатора

Плоским конденсатором зазвичай називають систему плоских провідних пластин - обкладок, які розділені діелектриком. Простота конструкції такого конденсатора дає

змогу порівняно просто розраховувати його електроемність і мати значення, які підтверджуються результатами експерименту. Для цього достатньо знати його геометричні параметри і електричні властивості діелектрика між пластинами. Залежність електроємності плоского конденсатора від вказаних параметрів можна дослідити на лабораторному обладнанні.

Побудуємо плоский конденсатор з двох металевих пластин, розміщених на ізоляційних підставках, i з'єднаємо їх з електрометром так, що одна з пластин буде приєднана до стиржня електрометра, а друга до його металевого корпуса (мал.

Мал. 137. Плоский конденсатор, з'єянаний 3 електрометром 1.37). При такому з'єднанні електрометр показуватиме різницю потенціалів між пластинами, які утворюють плоский конденсатор з двох пластин.

Проводячи дослідження, пам'ятатимемо, що за сталого значення заряду пластин зменшення різниці потенціалів свідчить про збільшення електроємності конденсатора, і навпаки.

За сталого значення заряду пластин зменшення різниці потенціалів свідчить про збільшення електроємності конденсатора, і навпаки.

Зарядимо пластини різнойменними зарядами і позначимо відхилення стрілки електрометра. Наближаючи пластини одна до одної (зменшуючи відстань між ними), помітимо зменшення різниці потенціалів. Отже, при зменшенні відстані між пластинами конденсатора його електроемність збільшуеться. При збільшенні відстані покази стрілки електрометра збільшуються, що є свідченням зменшення електроємності.

Електроємність плоского конденсатора обернено пропорційна відстані між його обкладками.

$$
C \sim \frac{1}{d}
$$

де d - відстань між обкладками.
Цю залежність можна зобразити графіком оберненої пропорційної залежності (мал. 1.38).

Електроємність плоского конденсатора обернено пропорційна відстані між його обкладками.

Мал. 138. Графік залежності електроємності плоского конденсатора віg відстані між пластинами

Мал. 1.39. При розрахунках електроемності плоского конденсатора враховують пиощу перекриття пластин

Зміщуватимемо пластини одна відносно одної в паралельних площинах, не змінюючи відстані між ними. При цьому площа перекриття пластин змінюватиметься (мал. 1.39). Зміна різниці потенціалів, показана електрометром, засвідчить зміну електроемності.

Збільшення площі перекриття пластин приведе до збільшення електроємності, і навпаки.

Електроємність плоского конденсатора пропорційна площі пластин, що перекриваються.

$$
C \sim S
$$

де S - площа пластин, що перекриваються.
Електроємність плоского конденсатора пропорційна площі пластин, що перекриваються.

Цю залежність можна зобразити графіком прямої пропорційної залежності (мал. 1.40).

Повернувши пластини в початкове положення, внесемо в простір між ними плоску пластину з діелектрика. Електрометр покаже зменшення різниці потенціалів між пластинами, що означає збільшення електроємності

Мал. 1.40. Графік залежності електроемності плоского конденсатора вія глощі його пластин конденсатора. Якщо між пластинами помістити таку саму за розмірами пластину, але з іншої речовини, то зміна електроємності буде іншою.

Електроємність плоского конденсатора залежить від діелектричної проникності діелектрика.

$$
C \sim \varepsilon,
$$

де ε - діелектрична проникність діелектрика.

Таку залежність зображено на графіку (мал. 1.41).

Результати дослідів можна узагальнити формулою електроємності плоского конденсатора

$$
C=\frac{\varepsilon \varepsilon_{0} S}{d}
$$

де S - площа пластини; d - відстань між ними; ε - діелектрична проникність діелектрика; ε_{0} - електрична стала.

Мал. 1.41. Графік залежності електроемності плоского конденсатора віg gіелектричної проникності gіелектрика

Електроємність плоского конденсатора залежить від діелектричної проникності діелектрика.

1. Яка будова плоского конденсатора?
2. За зміною якої величини в досліді можна робити висновки про зміну електроємності?
3. У якій послідовності проводиться дослід, у якому з'ясовувалася залежність електроємності конденсатора від його параметрів?
4. Як залежить електроємність плоского конденсатора від активної площі пластин?
5. Як залежить електроємність плоского конденсатора від відстані між пластинами?
6. Як впливає діелектрик на електроємність конденсатора?

Вправа 9

1. Площа пластин слюдяного конденсатора дорівнює $15 \mathrm{~cm}^{2}$, а відстань між пластинами - $0,02 \mathbf{c м}$. Яку електроємність має конденсатор?
2. Визначити площу аркуша алюмінієвої фольги, необхідну для виготовлення плоского конденсатора електроємністю 1 мкФ, якщо діелектриком буде парафінований папір завтовшки 0,25 мм.

3*. Плоский конденсатор складається з двох розділених повітряним проміжком пластин площею 100 см 2 кожна. 3 наданням одній з пластин заряду 5 нКл між пластинами виникла різниця потенціалів 120 B . На якій відстані одна від одної розташовані пластини?

4*. Плоский повітряний конденсатор, відстань між пластинами якого 5 мм, заряджений до різниці потенціалів 3000 В. Площа кожної його пластини $15,7 \mathrm{~cm}^{2}$. Конденсатор від'еднують від джерела напруги, а потім його пластини розсувають на відстань 1 см. Визначити електроемність нового конденсатора і різницю потенціалів між його пластинами.

§ 13. З'egнання конgенсаторів

Для отримання потрібних значень електроємності конденсатори певним чином з'еднують між собою. На практиці застосовують паралельне, послідовне і змішане з'єднання конденсаторів.

При паралельному з'єднанні кон-

Мал. 1.42. Схема паралельного з'єднання конgенсаторів денсаторів усі обкладки з'еднуються у дві групи, до кожної з яких входить по одній обкладці кожного конденсатора. На малюнку 1.42 зображено схему такого з'єднання. За такого з'єднання кожна група обкладок має однаковий потенціал.

Якщо таку батарею паралельно з'єднаних конденсаторів зарядити, то між обкладками кожного конденсатора буде однакова різниця потенціалів.
Загальний заряд на пластинах дорівнюватиме сумі зарядів кожного конденсатора:

$$
Q=Q_{1}+Q_{2}+Q_{3}+\ldots+Q_{n} .
$$

Врахувавши, що $Q=C \Delta \varphi$, одержимо

$$
C \Delta \varphi=C_{1} \Delta \varphi+C_{2} \Delta \varphi+C_{3} \Delta \varphi+\ldots+C_{n} \Delta \varphi,
$$

або

$$
C=C_{1}+C_{2}+C_{3}+\ldots+C_{n} .
$$

Електроємність батареї паралельно з'єднаних конденсаторів дорівнює сумі електроємностей усіх конденсаторів.

При послідовному з'єднанні конденсаторів з'єднуються між собою лише дві пластини різних конденсаторів. Якщо в кожному конденсаторі пластини позначити буквами A і B, то при послідовному з'єднанні пластина B_{1} буде з'єднана з пластиною A_{2}, пластина $B_{2}-$ з пластиною A_{3} і т. д. (мал. 1.43).

Якщо ланцюжок послідовно з'єднаних конденсаторів під'єднати до джерела струму, то обкладка A_{1} і обкладка B_{1} матимуть однакові за значенням заряди $+Q$ i $-Q$. Завдяки цьому всі обкладки всередині лан-

Мал. 1.43. Посліgовне з'єgнання конденсаторів цюжка матимуть такі самі, але попарно протилежні за знаком заряди:

$$
Q_{1}=Q_{2}=Q_{3}=Q_{4}=\ldots=Q_{n}=Q .
$$

Разом з тим загальна різниця потенціалів на кінцяях ланцюжка до-

рівнюватиме сумі різниць потенціалів на кожному конденсаторі:

$$
\Delta \varphi=\Delta \varphi_{1}+\Delta \varphi_{2}+\Delta \varphi_{3}+\ldots+\Delta \varphi_{n} .
$$

Врахувавши, що $\Delta \varphi=\frac{Q}{C}$, маємо

$$
\frac{Q}{C}=\frac{Q}{C_{1}}+\frac{Q}{C_{2}}+\frac{Q}{C_{3}}+\ldots+\frac{Q}{C_{n}} .
$$

Поділимо ліву і праву частини рівності на Q :

$$
\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\ldots+\frac{1}{C_{n}} .
$$

При послідовному з'єднанні конденсаторів обернене значення електроємності ланиюжка дорівнює сумі обернених значень електроємностей кожного конденсатора.

При послідовному з'єднанні конденсаторів обернене значення електроємності ланцюжка дорівнює сумі обернених значень електроємностей кожного конденсатора.

$$
\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\ldots+\frac{1}{C_{n}}
$$

При послідовному з'єднанні конденсаторів різної ємності $C_{1}, C_{2}, C_{3}, \ldots C_{n}$ загальна електроємність C буде меншою за електроємність найменшого конденсатора:

Якщо $C_{1}<C_{2}<C_{3}<\ldots<C_{n}$, то $C<C_{1}$.

Вправа 10

1. Чотири конденсатори мають електроємності 2 пФ, 5 пФ, 10 пФ і 20 пФ. Визначити їх загальну електроємність при паралельному і послідовному з'еднанні.
2. Конденсатор змінної електроемності складається з 12 пластин, площа кожної з яких становить $10 \mathrm{~cm}^{2}$. Повітряний проміжок між сусідніми пластинами становить 1 мм. Яку максимальну ємність має конденсатор?
3. Два конденсатори електроємністю 2 мкФ і 4 мкФ з'єднані послідовно і заряджені так, що різниця потенціалів між крайніми точками з'єднання становить 60 B . Знайти заряд і різницю потенціалів кожного конденсатора.
4. Два конденсатори, електроємності яких 4 мкФ і 1 мкФ, з'єднані послідовно і заряджені від джерела струму. Різниця потенціалів на з'єднанні становить 220 В. Визначити заряд і

Мал. 1.44. До заgачі 6

різницю потенціалів на кожному конденсаторі.
5. Різниця потенціалів на обкладках конденсатора електроемністю 6 мкФ становить 127 В. Його з'єднали паралельно з конденсатором, який має електроемність 4 мкФ і різницю потенціалів 220 B . Визначити електроемність батареї і різницю потенціалів між ї виводами.
6. Знайти електроємність системи конденсаторів, з'єднаних за схемою, зображеною на малюнку 1.44 .

§ 14. Енергія електричного поля

У зарядженому конденсаторі обкладки мають різнойменні заряди і взаємодіють між собою завдяки електричному полю, яке зосереджене між обкладками. Про тіла, між якими існує взаемодія, кажуть, що вони мають енергію. Отже, можна говорити і про енергію зарядженого конденсатора.

Наявність енергії у зарядженого конденсатора можна підтвердити на дослідах. Візьмемо конденсатор достатньо великої електроємності, джерело струму, лампочку і складемо електричне коло, схему якого зображено на малюнку 1.45 . Переведемо перемикач у положення 1 i зарядимо конденсатор до певної різниці потенціалів від джерела.

Якщо після цього перевести перемикач у положення 2 , то побачимо короткий спалах світла внаслідок розжарення нитки лампочки. Спостережуване явище можна пояснити тим, що заряджений конденсатор мав енергію, за рахунок якої була виконана робота з розжарення спіралі лампочки.

Згідно із законом збереження енергії робота, виконана при розряджанні конденсатора, дорів-

Мал. 1.45. Схема кола, у якому лампочка спалахуе за рахунок енергії заряяженого конденсатора нюе роботі, виконаній при його заряджанні. Розрахунок цієї роботи i, відповідно, потенціальної енергії конденсатора має враховувати особливості процесу заряджання конденсатора. Залежність заряду Q конденсатора від часу заряджання t показуе графік (мал. 1.46).

Оскільки заряд конденсатора змінюеться не пропорційно, вести розрахунки на основі формули

Мал. 1.46. Зміна заряgу конденсатора при ŭого заряgжанні

Мал. 1.47. До обчислення роботи електричного поля в конденсаторі
$A=Q E d$ не можна, адже напруженість електричного поля також весь час змінюеться. Разом з тим різниця потенціалів між обкладками при заряджанні лінійно змінюється від нуля до певного максимального значення (мал. 1.47). Тому робота, що виконуеться під час заряджання конденсатора, дорівнює:

$$
A=Q \cdot \frac{\Delta \varphi^{*}}{2}
$$

Якщо врахувати, що $Q=C \Delta \varphi$, то

$$
A=Q \cdot \frac{\Delta \varphi}{2}=C \cdot \frac{(\Delta \varphi)^{2}}{2} .
$$

Таким чином, енергія електричного поля конденсатора дорівнює:

$$
W=A=C \cdot \frac{(\Delta \varphi)^{2}}{2}
$$

Або, взявши до уваги, що $\Delta \varphi=\frac{Q}{C}$, одержимо: $W=\frac{Q}{2} \cdot \frac{Q}{C}=\frac{Q^{2}}{2 C}$.
Задача. Імпульсне контактне зварювання мідної дротини здійснюють за допомогою розряду конденсатора електроємністю 1000 мкФ при різниці потенціалів між обкладками 1500 В. Яка середня корисна потужність імпульсного розряду, якщо його тривалість 2 мкс і ККД установки становить 4% ?

Дано:
Розв'язання
$C=1000$ мк Φ,
$\Delta \varphi=1500 \mathrm{~B}$,
$t=2$ мкс,
$\eta=4 \%$.
N - ?
Середня корисна потужність визначиться з урахуванням часу виконання роботи:

[^2]$$
N=\frac{A}{t}=\frac{\eta C \cdot(\Delta \varphi)^{2}}{2 t} .
$$

Підставивши значення фізичних величин, одержимо

$$
N=\frac{1000 \cdot 10^{-6} \Phi \cdot 1500^{2} \mathrm{~B} \cdot 4 \cdot 10^{2}}{2 \cdot 2 \cdot 10^{-6} \mathrm{c}}=45 \cdot 10^{-6} \mathrm{Br} .
$$

$B i \partial n o в i \partial ь:$ корисна потужність, яку розвиває зварювальна установка, дорівнюе $45 \cdot 10^{-6}$ Вт.

1. Чому заряджений конденсатор має енергію?
2. Яке походження енергії конденсатора?
3. Яка особливість процесу заряджання конденсатора?
4. Як визначити енергію конденсатора за допомогою графіка?
5. Які фізичні величини визначають енергію конденсатора?

Вправа 11

1. Визначити енергію конденсатора, електроємність якого дорівнюе 200 мкФ, якщо різниця потенціалів на його обкладках становить 1000 В.
2. Заряд конденсатора $4,8 \cdot 10^{-3}$ Кл, різниця потенціалів на обкладках 600 B . Яка енергія конденсатора?
3. Визначити енергію плоского конденсатора з площею кожної обкладки $400 \mathrm{~cm}^{2}$. Товщина діелектрика між пластинами 1,5 мм, заряд на обкладці $2 \cdot 10^{-9}$ Кл $(\varepsilon=6)$.
4. Енергія зарядженого конденсатора електроємністю 400 мкФ дорівнює 200 Дж. Визначити різницю потенціалів між його обкладками.
5. Визначити електроємність конденсатора, якщо при різниці потенціалів на його обкладках 1000 B його енергія дорівнює 100 Дж.
6. Конденсатор з площею пластин по $200 \mathrm{~cm}^{2}$ та відстанню між ними 3 cm заряджається до різниці потенціалів $2 \cdot 10^{3} \mathrm{~B}$, після чого його від'єднують від джерела. Потім пластини розсувають до відстані 7 cm . Визначити виконану механічну роботу.

§ 15. Вплив електричного поля на живі організми

Для багатьох людей поняття електрики й електричного поля пов'язані з електризацією різних тіл, потужними електричними машинами, засобами електроніки тощо. Разом з тим електричні явища відбуваються і в живій природі. I це не лише електризація хутра кота чи собаки, коли їх погладжують рукою, але й більш складні форми, пов'язані з їх життедіяльністю. Існують організми, які́ можуть генеруваwww.testosvit.com

Мал. 1.48. Електричний вугор

Мал. 1.49. Електричний скат

ти електрику і використовувати їі для полювання, захисту і орієнтування.

Найвідомішою є риба вугор (мал. 1.48). Вона може генерувати різницю потенціалів до 360 B . Розряди, які створюються цією рибою, відчуваються на відстані до 20 cm .

Властивості електричного вугра використовували давні лікарі, успішно лікуючи подагру, головний біль, епілепсію.

Подібні здібності має і електричний скат-торпедо (мал. 1.49). Він здатний протягом 15 с генерувати до 150 розрядів за секунду по 80 В кожен.

Електричні явища відіграють суттеву роль і в фізіології людини. Одним з потужних електричних генераторів людини є серце (мал. 1.50). На малюнку показано еквіпотенщіальні поверхні тіла людини при активній роботі серця.

Хоча ці потенціали і невеликі кілька мілівольт, - але їх використовують для діагностики хвороб серця. Записуючи ці потенціали, спеціальні апарати будують кардіограми, за якими лікар визначає стан людини.

У фізіотерапевтичних кабінетах лікарень користуються методом фарадизації, коли людину піддають дії електричного поля і таким чином лікують деякі хвороби.

Дослідження вчених показали, що під дією електричного поля поліпшуються біологічні властивості насіння. Рослини, вирощені з такого насіння, дають суттево більший урожай. Навіть трава росте

Мал. 1.50. Еквіпотенціальні поверхні люgини

інтенсивніше під лініями електропередач, де існує сильне електричне поле.

Якщо людину певним чином ізолювати від дії електричного поля Землі, то їі стан суттєво погіршується. Деякі люди погано почувають себе в суцільнометалевих вагонах, літаках, автомобілях, де електростатичне поле Землі екрануеться металевим корпусом транспортного засобу.

§ 16. Умови виникнення електричного струму

Під час вивчення фізики в попередніх класах було з'ясовано, що таке електричний струм, які його основні властивості та закономірності, а також ви дізналися про його застосування. Нагадаємо, що під електричним струмом розуміють напрямлений рух заряджених частинок або тіл. Струм супроводжуеться певними фізичними діями: магнітною, тепловою, хімічною тощо, які порівняно легко можна виявити і застосувати для практичних потреб.

Для створення електричного струму повинні забезпечуватися певні умови:

1) наявність вільних носіїв електричного заряду;
2) наявність у середовищі причин, які спонукають рухатися вільні частинки в певному напрямі, наприклад наявність електричного чи магнітного полів, прискорений рух провідника тощо.

> Умови виникнення електричного струму:
> - наявність вільних носїв електричного заряду;
> - існування в середовищі причин, які спонукають до руху в певному напрямі.

Розглянемо закономірності проходження струму в провіднику, який є складовою частиною електричного кола.

Для переміщення заряджених частинок повинна існувати певна різниця потенціалів, тобто на кінцях провідника мають бути різні потенціали. Тоді носії заряду будуть рухатися від точки з більшим потенціалом до точки з меншим потенціалом.

Щоб це відбувалося тривалий час, між кінцями провідника повинна існувати постійна різниця потенціалів. Цю функцію виконують джерела струму, які за рахунок певного виду енергії забезпечують дотримання цієї умови. У, гальванічних еле-

ментах і акумуляторах в електричну енергію перетворюється енергія хімічних взаємодій, у термогенераторах - теплова енергія, в електромеханічних генераторах - механічна тощо. Крім джерел струму, електричні кола мають й інші елементи: різні споживачі електричної енергії, вимірювальні й регулювальні прилади; вимикачі тощо, з'еднані провідниками.

В електричні кола входять джерела струму, споживачі, вимірювальні та регулювальні прилади, вимикачі та інші елементи, з'єднані провідниками.

Для характеристики електричного струму використовують фізичну величину, яка називається силою струму. Вона характеризуе швидкість руху заряджених частинок у провіднику і чисельно дорівнюе відношенню перенесеного заряду ΔQ до інтервалу часу Δt, протягом якого відбувалося це перенесення:

$$
I=\frac{\Delta Q}{\Delta t} .
$$

Струм називаеться постійним, якщо за будь-які однакові інтервали часу через поперечний переріз провідника переноситься однако$I=\frac{\Delta Q}{\Delta t}$. вий заряд.

У Міжнародній системі одиниць (CI) одиницею струму є ампер:

$$
1 \mathrm{~A}=\frac{1 К \pi}{1 \mathrm{c}}=1 \frac{\mathrm{~K} \pi}{\mathrm{c}} .
$$

Для вимірювання сили струму використовують також кратні і частинні одиниці:

1 мікроампер $=1$ мк $\mathrm{A}=10^{-6} \mathrm{~A}$;
1 міліампер $=1 \mathrm{~mA}=10^{-3} \mathrm{~A}$;
1 кілоампер $=1 \kappa A=10^{3} \mathrm{~A}$.

Ом Георг Симон (1787-1854) - німецький фізик, учитель математики І фізики, член-кореспондент Берлінської АН. Досліржував електричний струм і явища, що його супроводжують. Встановив залежність між силою струму I напругою ділянки кола, названу на його честь законом Ома.
у 1826-1827 pp. німецький фізик Георг Ом встановив закон, який пов'язує між собою основні фізичні величини, що характеризують електричне коло:

www.testosvit.com

сила струму в однорідній ділянці прямо пропориійна напрузі й обернено пропорційна опору провідника.

$$
I=\frac{U}{R},
$$

де I - сила струму; U - напруга на ділянці кола; R - опір провідника.

Сила струму в однорідній ділянці прямо пропорційна напрузі й обернено пропорційна опору провідника:

$$
I=\frac{U}{R}
$$

Пригадаймо, що напруга U - це енергетична характеристика електричного поля, яка дорівнює роботі A поля з переміщення одиничного електричного заряду Q даною ділянкою кола:

$$
U=\frac{A}{Q} .
$$

У CI вона вимірюється в вольтах (B).
На практиці використовуються кратні і частинні одиниці напруги:

$$
\begin{aligned}
& 1 \text { мілівольт }=1 \mathrm{mB}=10^{-3} \mathrm{~B} \text {; } \\
& 1 \text { мікровольт } 1 \mathrm{~m} \mathrm{\kappa B}=10^{-6} \mathrm{~B} \text {; } \\
& 1 \text { кіловольт }=1 \mathrm{kB}=10^{3} \mathrm{~B} \text {; } \\
& 1 \text { мегавольт }=1 \mathrm{MB}=10^{6} \mathrm{~B} .
\end{aligned}
$$

Опір як фізична величина характеризує провідник і залежить від його геометричних і фізичних параметрів. Природа електричного опору пояснюється взаємодією рухомих носіїв зарядів з іншими структурними елементами провідника, зокрема із йонами кристалічної гратки.

З формули закону Ома можна знайти значення опору ділянки електричного кола:

$$
R=\frac{U}{I} .
$$

Якщо при напрузі 1 В у провіднику проходить струм 1 A , то опір цього провідника становить 1 Ом.

Якщо при напрузі 1 В у провіднику проходить струм 1 A, то опір цього провідника становить 1 Ом.

$$
1 O_{M}=\frac{1 B}{1 A}
$$

Кратні і частинні одиниці електричного опору:

$$
\begin{aligned}
& 1 \text { міліом }=1 \mathrm{mOм}=10^{-3} \mathrm{Om} \\
& 1 \text { кілоом }=1 \mathrm{\kappa Oм}=10^{3} \mathrm{Om} \\
& 1 \text { мегаом }=1 \mathrm{MO}=10^{6} \mathrm{Om}
\end{aligned}
$$

Опір провідника можна визначити також, знаючи речовину, з якої виготовлено провідник, і його геометричні розміри:

$$
R=\frac{\rho l}{S}
$$

де ρ - питомий опір речовини провідника; l - довжина провідника; S - площа поперечного перерізу провідника.

$$
R=\frac{\rho l}{S}
$$

1. Що таке електричний струм?
2. Що таке сила струму? Які одиниці вимірювання сили струму?
3. Зв'язок між якими величинами встановлює закон Ома для ділянки кола?
4. Що називають електричною напругою?
5. Яка природа електричного опору?

§ 17. Робота і потужність струму

Якщо в провіднику існує електричний струм, то його електрична енергія може перетворюватися в інші види: теплову, механічну, хімічну, світлову тощо. Будь-яке перетворення енергії з одного виду в інший характеризуеться виконанням роботи.

Робота, що виконується при перенесенні зарядженими частинками на цій ділянці електричного заряду ΔQ, визначається за формулою:

$$
A=\Delta Q U
$$

Оскільки $\Delta Q=I \Delta t$, то для визначення роботи можна скористатися формулою

$$
A=U I \Delta t .
$$

Робота електричного струму вимірюється в джоулях (Дж). Отже,

$$
A=U I \Delta t
$$

$$
1 \text { Дж }=1 \mathrm{~B} \cdot \mathbf{1} \mathrm{~A} \cdot \mathbf{1} \mathrm{c}=1 \mathrm{~B} \cdot \mathrm{~A} \cdot \mathrm{c} .
$$

Для характеристики здатності виконати роботу користуються поняттям «потужність». Потужність дорівнюе роботі, яка виконуеться за одиницю часу:

$$
P=\frac{A}{\Delta t}=U I .
$$

$$
\begin{equation*}
P=\frac{A}{\Delta t}=U I \tag{Вт}
\end{equation*}
$$

$$
1 \mathrm{Br}=1 \mathrm{~B} \cdot 1 \mathrm{~A}
$$

Для електричного струму $1 \mathrm{~B}=1 \mathrm{~B} \cdot 1 \mathrm{~A}=1 \mathrm{~B} \cdot \mathrm{~A}$.
Для вимірювання потужності електричного струму використовують також кратні і частинні одиниці:

$$
\begin{aligned}
& 1 \text { мікроват }=1 \mathrm{мкB} \mathbf{~}=10^{-6} \mathrm{Br} ; \\
& 1 \text { міліват }=1 \mathrm{mBT}=10^{-3} \mathrm{BT} ; \\
& 1 \text { гектоват }=1 \mathrm{rBT}=10^{2} \mathrm{Br} ; \\
& 1 \text { кіловат }=1 \mathrm{kBr}=10^{3} \mathrm{Br} ; \\
& 1 \text { мегават }=1 \mathrm{MBT}=10^{6} \mathrm{Br} .
\end{aligned}
$$

На практиці широко використовуеться теплова дія струму. Завдяки їй працюють електронагрівні прилади - електричні праски, водонагрівачі, електрочайники, обігрівачі тощо. Кількість теплоти, що виділяється в провіднику за певний час, визначається за законом Джоуля-Ленца:

$$
Q=I^{2} R \Delta t
$$

$$
Q=I^{2} R \Delta t
$$

де I - сила струму; R - опір провідника; Δt - час.

1. як визначити роботу електричного струму?
2. Що таке потужність і як вона визначається?
3. Які одиниці вимірювання роботи і потужності?
4. Як формулюється закон Джоуля-Ленца?

§ 18. Електрорушійна сила gжерела струму

Як ми вже встановили, для виникнення електричного струму потрібно створити на кінцях провідника різницю потенціалів і постійно підтримувати ї.

Ця умова може бути виконана, якщо в електричному колі буде джерело струму, яке завдяки своїй внутрішній енергії виконуватиме роботу, спрямовану на розділення електричних зарядів. Ця енергія отримала назву сторонніх сил, оскільки має неелектростатичне походження.

Сторонні сили виконують роботу з розділення електричних зарядів у електричному колі. Вони мають неелектростатичне походрження.

Так, у гальванічних елементах ця енергія виникає внаслідок хімічних реакцій між різнорідними речовинами. У сонячних батареях заряди розділяються внаслідок взаємодії атомів з фотонами. В електрофорній машині розділення зарядів здійснюеться завдяки виконанню механічної роботи під час обертання дисків.

Тому для характеристики здатності джерела струму створювати різницю потенціалів використовують поняття електрорушійної сили.

Електрорушійною силою джерела струму \mathscr{E} називають фізичну величину, яка характеризуе здатність сторонніх сил створювати й підтримувати різницю потенціалів. Вона дорівнює відношенню роботи сторонніх сил $A_{\text {етор }}$ до значення розділених зарядів ΔQ.

$$
\mathscr{E}=\frac{A_{\text {стор }}}{\Delta Q} .
$$

Електрорушійна сила є характеристикою джерела і не залежить від того, яке зовнішнє навантаження приеднують до його полюсів. Як і напруга, вона вимірюеться у вольтах (B).

Розглянемо механізм дії джерела струму з розділення електричних зарядів сторонніми силами (мал. 1.51).

Мал. 1.51. Замкнуте електричне коло

Очевидно, що заряджені частин-
ки будуть рухатися від полюса A до полюса B. Сторонні ж сили намагатимуться підтримувати сталою різницю потенціалів завдяки виконанню роботи з розділення в джерелі струму електричних зарядів. Отже, у джерелі струму проходитиме струм, сила якого буде такою самою, як і в зовнішньому колі. Тому джерело струму матиме також певний опір, який визначае силу струму в ньому і називаеться внутрішнім опором джерела струму.

Таким чином, в електричному колі можна виокремити зовнішню і внутрішню частини. Загальний опір кола дорівнюватиме сумі опорів його зовнішньої і внутрішньої частин.

1. Яка роль джерела струму в електричному колі?
2. яка природа сторонніх сил?
3. Яка роль сторонніх сил у джерелі струму?
4. Що таке електрорушійна сила?
5. яке походження внутрішнього опору джерела струму?

§ 19. Закон Ома для повного кола

Відкритий Г. Омом закон для ділянки кола справджується і в загальному випадку для повного кола, якщо брати до уваги як зовнішню, так і внутрішню його частини. Математичний запис закону Ома для повного кола можна отримати на основі закону збереження і перетворення енергії, універсального для всіх процесів у природі.

Мал. 152. Замкнуте електричне коло

Нехай маємо електричне коло, що складається із джерела струму, EPC якого $\mathscr{8}$ i внутрішній опір r, та провідника опором R (мал. 1.52).

За законом збереження енергії робота сторонніх сил дорівнює роботі електричного струму, що виконуеться в зовнішній і внутрішній частинах кола:

$$
A_{\text {crop }}=A_{\text {nin }}+A_{3} .
$$

За означенням

$$
A_{\text {crop }}=\mathscr{C} Q \Delta t ; A_{\mathrm{si}}=U_{\mathrm{an}} Q \Delta t ; \quad A_{\mathrm{s}}=U_{\mathrm{s}} Q \Delta t .
$$

Звідси

$$
\mathscr{C}=U_{\mathrm{Bn}}+U_{\mathrm{a}} .
$$

Якщо врахувати, що за законом Ома для ділянки кола $U=I R$, то отримаємо формулу цього закона для повного кола:

$$
\mathscr{E}=I R+I r, \text { звідси } I=\frac{\mathscr{E}}{R+r} .
$$

Таким чином, сила струму в повному колі пропорційна електрорушійній силі джерела і обернено пропорційна повному опору кола.

Сила струму в повному колі пропорційна електрорушійній силі джерела І обернено пропорційна повному опору кола.

$$
I=\frac{\mathscr{8}}{R+r}
$$

www.testosvit.com

Закон Ома для повного кола дає змогу розраховувати два екстремальних випадки в електричному колі: коротке замикання і розімкнуте коло. Якщо опір зовнішньої частини кола прямуе до нуля (коротке замикання), то сила струму

$$
I_{\text {кз }}=\frac{\mathscr{E}}{r} .
$$

Це максимальне значення сили струму, яке може бути в даному колі.

Якщо коло розірване ($R \rightarrow \infty$), то струм у колі припиняеться за будь-якого значення EPC і внутрішнього опору. Тоді напруга на клемах джерела струму дорівнюватиме ЕРС джерела. Тому інколи дають спрощене означення EPC: це - величина, яка дорівнює напрузі на клемах джерела в розімкнутому колі.

Існуе три типи з'єднання джерел струму: послідовне,

посліgовного з'еднання gжерел струму паралельне і змішане.

Послідовним є таке з'єднання, коли з'єднують один з одним різнойменні полюси джерел: позитивний попереднього з негативним наступного і т. д. (мал. 1.53).

Найчастіше в батареї з'еднують однакові джерела. Тому при послідовному з'єднанні N джерел електрорушійна сила батареї буде в N разів більша, ніж ЕРС одного джерела.

$$
\mathscr{E}_{\text {bat }}=N \mathscr{E} .
$$

Внутрішній опір такої батареї також буде більшим у N разів:

$$
r_{\text {bar }}=N r .
$$

Закон Ома для повного кола з батареєю послідовно з'єднаних однакових джерел струму буде мати вигляд:

$$
I=\frac{N \mathscr{E}}{R+N r} .
$$

Послідовне з'єднання джерел струму зручне тоді, коли опір навантаження великий порівняно з внутрішнім опором одного джерела струму.

Паралельним є таке з'єднання джерел струму, коли їх всі однойменні полюси з'єднують в один окремий вузол (мал. 1.54).

Мал. 1.54. Схема паралельного з'єgнання gжерел струму

Мал. 155. Змішане з'єgнання яжерел струму

Таке з'еднання застосовуеться тоді, коли в колі необхідно мати значної сили струми за невеликої напруги.

Електрорушійна сила батареї однакових паралельно з'єднаних джерел струму дорівнюе ЕРС одного джерела:

$$
\mathscr{E}_{6 \mathrm{eat}}=\mathscr{E} .
$$

Внутрішній опір при паралельному з'еднанні джерел струму у N разів менший за опір одного джерела:

$$
r_{\text {6at }}=\frac{r}{N} .
$$

Формула закону Ома для цього випадку має вигляд:

$$
I=\frac{\mathscr{E}}{R+\frac{r}{N}}
$$

56 Паралельне з'єднання джерел струму зручне тоді, коли опір зовнішньої частини значно менший за внутрішній опір одного джерела струму.

При змішаному з'єднанні батареї джерел струму (паралельні або послідовні) з'єднують, у свою чергу, послідовно чи паралельно (мал. 1.55).

1. Зв'язок яких величин відображає закон Ома для повного кола?
2. Яка природа внутрішнього опору джерела?
3. Для чого джерела струму з'єднують послідовно?
4. Для чого джерела струму з'єднують паралельно?
5. Як розрахувати струм короткого замикання?
6. Чому дорівнює напруга на полюсах джерела струму при розімкнутому колі?

Вправа 12

1. У замкнутому колі, у якому є джерело струму з EPC 12 B , проходить струм 2 A . Напруга на затискачах джерела
10 B. Знайти внутрішній опір джерела і опір навантаження.
2. При замиканні джерела струму провідником з опором 10 Ом сила струму в колі дорівнює $1 \cdot \mathrm{~A}$, а при замиканні провідником опором 4 Ом сила струму - 2 A . Знайти ЕРС джерела і його внутрішній опір.
3. У колі, що містить джерело струму з EPC 6 В і провідник $з$ опором 9 Ом, сила струму становить 0,6 А. Знайти

внутрішній опір джерела і струм короткого замикання для нього.
4. В електричному колі (мал. 1.56) увімкнено джерело струму з EPC 2 В і внутрішнім опором 2 Ом та реостат з максимальним опором 8 Ом.
a) Яку максимальну силу струму може показати амперметр у цьому колі?
б) Яку мінімальну силу струму

Мал. 156. До задачі 4 може показати амперметр у цьому колі?
в) Яку максимальну напругу покаже вольтметр?
г) Яку мінімальну напругу може показати вольтметр у цьому колі?
r) Побудуйте графік залежності сили струму в цьому колі від опору його зовнішньої частини.
д) Побудуйте графік залежності напруги на реостаті від його опору.

Лабораторна робота ${ }^{\rho} 1$

Визначення EPC і внутрішнього опору джерела струму

Мета. Закріпити знання про закон Ома для повного кола; оволодіти методом визначення EPC і внутрішнього опору джерела через вимірювання сили струму і напруги.

Обладнання. Лабораторний вольтметр, лабораторний амперметр, магазин опорів, вимикач, лабораторне джерело струму, провідники.

Теоретичні відомості

За законом Ома в повному колі ЕРС дорівнюе сумі всіх спадів напруги на внутрішній і зовнішній ділянках кола:

$$
\mathscr{E}=U_{\text {зonn }}+U_{\text {nn }} .
$$

Якщо врахувати закон Ома для ділянки кола, то

$$
U_{\text {zon月 }}=I R \text {, a } U_{\mathrm{an}}=I r,
$$

де r - внутрішній опір джерела струму. Отже,

$$
\mathscr{E}=I R+I r .
$$

У цьому рівнянні два невідомих, а тому для їх знаходження за правилами алгебри потрібно щонайменше два рівняння, у які входять ці невідомі.

Мал. 1.57. Прилаgu go лабораторної роботи

Для отримання таких двох рівнянь проведемо дослідження електричного кола за двома етапами.

1) Складемо електричне коло, у яке входять джерела струму, амперметр, вимикач і магазин опорів, у якому відомо значення всіх опорів, що в нього входять. Оберемо деяке середнє значення опору R_{1} і замкнемо коло. Стрілка амперметра покаже деяке значення сили струму I_{1}. Тоді

$$
\begin{equation*}
\mathscr{E}=I_{1} R_{1}+I_{1} r . \tag{1}
\end{equation*}
$$

2) Повторимо дослід, замінивши резистор у магазині опорів на деяке значення R_{2}. Для цього випадку

$$
\begin{equation*}
\mathscr{E}=I_{2} R_{2}+I_{2} r . \tag{2}
\end{equation*}
$$

Розв'язавши рівняння (1) i (2), матимемо

$$
r=\frac{I_{1} R_{1}-I_{2} R_{2}}{I_{2}-I_{1}} .
$$

Підставивши значення r в (1) або (2), матимемо значення EPC

$$
\begin{equation*}
\mathscr{E}=I_{1} R_{1}+I_{1} \frac{I_{1} R_{1}-I_{2} R_{2}}{I_{2}-I_{1}}, \tag{3}
\end{equation*}
$$

або

$$
\begin{equation*}
\mathscr{E}=I_{2} R_{2}+I_{2} \frac{I_{1} R_{1}-I_{2} R_{2}}{I_{2}-I_{1}} . \tag{4}
\end{equation*}
$$

Виконання роботи

1. Накреслити коло з послідовно з'єднаних джерела струму, амперметра, магазина опорів і вимикача.
2. За накресленою схемою скласти електричне коло.
3. У магазині опорів увімкнути резистор опором 2 Ом.
4. Замкнути коло і зняти покази амперметра I_{1}.
5. Увімкнути резистор в магазині опорів на 5 Ом.
6. Замкнути коло і зняти покази амперметра I_{2}.
7. Результати вимірювань занести в таблицю.

Таблиця

№	Сила струму, A	Опір зов- нішньоо кола, Ом	Внутрішній опір джере- ла, Ом	ЕРС дже- рела, В	Напруга на клемах джерела, B
1					
2					

8*. За формулами (3) i (4) розрахувати ЕPC і порівняти знайдені значення.

9*. За розімкнутого кола виміряти напругу U на клемах джерела і порівняти її зі значеннями розрахованої ЕPC. Зробити висновки.

Додаткове завдання. Провести ще кілька вимірювань сили струму для різних значень опору зовнішньої ділянки кола. Побудувати графік залежності сили струму в колі від його опору.

§ 20. Правила безпечного користування електричними прилаgами

Життя сучасної людини тісно пов'язане з використанням електричних приладів і установок. Тіло людини є добрим провідником електричного струму, який може спрричинити біологічну дію, небезпечну для життя людини. Людина, яка зазнала дії електричного струму, дістає не тільки значні опіки, а й порушення роботи всієї нервової системи. Навіть за порівняно незначної напруги людина може зазнати важких ушкоджень організму, якщо вона знаходиться, наприклад, у вологому приміщенні, на вологій землі, торкнулася проводів обома руками тощо.

Щоб запобігти ураженню струмом, потрібно дотримуватися певних правил.

1. Не користуватися несправними приладами і обладнанням.
2. Не використовувати електричні прилади (праски, фени, плойки, обігрівачі) у ванних кімнатах чи вологих приміщеннях.
3. Не влаштовувати ігри під лініями електропередач.
4. Експериментуючи з електричними схемами, використовувати джерела струму з EPC не вище 36 B .
5. При виконанні лабораторних робіт вмикати електричне коло установки лише після перевірки і дозволу вчителя.
6. Не торкатися оголених частин електричних установок.
7. Якщо товариш отримав ураження електричним струмом, у першу чергу необхідно, дотримуючись правил безпеки, від'єднати джерело струму, викликати лікаря і за можливості надати першу медичну допомогу.

§ 21. Електричний струм у різних сереgовищах

За означенням електричний струм - це напрямлений рух заряджених частинок. Отже, електричний струм можна отримати лише в середовищі, де є вільні заряджені частинки - носії електричного заряду. Створити потік таких частинок, які рухатимуться в одному напрямі, можна порізному. Це може бути дія електричного поля, змінного магнітного поля, прояв інерції. У середовищах, де заряджені частинки зв'язані з молекулами чи атомами й не можуть вільно рухатися, електричний струм практично неможливий. Середовища, у яких ε вільні частинки, назвали свого часу провідниками - речовинами, які проводять електричний струм.

Електричний струм у металах

Мал. 158. Схема gocrigy Толмена i Стоарта

Вирішальним у дослідженні природи струму в металах був дослід, проведений в 1916 р. американськими фізиками P. Толменом i Т. Стюартом. У досліді була використана котушка з великою кількістю витків мідного дроту, яка могла обертатися навколо своєї осі. Кінці обмотки через контакти були з'еднані з чутливим гальванометром (мал. 1.58).

При швидкому обертанні котушки стрілка гальванометра була нерухомою. При різкому гальмуванні котушки стрілка відхилялася від нульової поділки, фіксуючи короткотривалий струм у колі. Детальні розрахунки показали, що частинками, які утворювали струм, були електрони. Отримавши велику швидкість при обертанні котушки, електрони деякий час після зупинки котушки продовжували рухатися за інерцією, створюючи струм. Оскільки отриманий в досліді струм нічим суттево не відрізнявся від струму в звичайному електричному колі, то був зроблений висновок про електронну природу електричного струму в металах.

У кристалічній структурі металів електрони перебувають у вільному стані, здійснюючи лише хаотичний тепловий рух (мал. 1.59).

Епектричний струм у металах - це потік електронів.
www.testosvit.com

Якщо з'являється електричне поле, то електрони починають зміщуватися в напрямі силових ліній поля, утворюючи електричний струм.

При русі між вузлами кристалічної 'ратки металу електрони взаємодіють з йонами і віддають їм частину енергіі, отриманої під дією електричного поля. Отримана йонами енергія збільшує амплітуду їх коливань, що проявляеться як теплова дія електричного струму. Віддаючи частину своєї енергії йонам, електрони зменшують швидкість свого поступального руху, що дає підстави говорити про існування опору провідника. Якщо провідник нагрівати від зовнішнього джерела тепла, то збільшуеться амплітуда теплових коливань йонів і рівень їх взаемодії з електронами. Тому опір металевого провідника за підвищення температури зростає. Характерною особливістю металевих провідників є те, що зростання опору відбуваеться пропорційно до зростання температури, а при зниженні температури їх опір зменшуеться.

Дослідження голландського фізика Камерлінга-Онесса показали, що опір металевого провідника майже зникає за температури, близької до абсолютного нуля. Досліджуючи залежності електричних властивостей ртуті від температури, він помітив, що за температури $4,12 \mathrm{~K}$ ї опір практично дорівнює нулю. Стан провідника, у якому він не має опору, назвали надпровідністю. Збуджений у такому провіднику електричний струм може існувати досить довго.

у стані надпровідності провідники практично втрачають електричний onip.

Надпровідність цікавить учених та інженерів, які вбачають у ній засіб для створення нових економічних технологій. У першу чергу це стосуеться передачі без втрат електроенергіі на великі відстані, створення надпотужних електромагнітів для наукових досліджень, розробки принципово нових надпотужних комп'ютерних систем тощо.

Електричний струм у вакуумі

У вакуумі, у якому практично відсутні вільні носії електричного заряду, створити електричний струм можна за умови штучного введення їх в обмежений простір, де існує електричне поле. Вільні заряджені частинки у вакуумі можна одержати завдяки нагріванню (термоелектронна емісія) або опроміненню одного з електродів (фотоелектронна емісія).

Вільні електрони зосереджуються навколо електрода, з якого вони вилетіли, і утворюють електронну хмарку. Якщо температура електрода підтримуеться сталою чи світловий потік не зміwww.testosvit.com

Мал. 1.60. Електроннопроменева трубка

нюється, то електрони перебувають у динамічній рівновазі, за якої кількість електронів, що вилітають з електрода, дорівнює кількості електронів, які повертаються в нього.

Якщо створити електричне поле, приєднавши, наприклад, до електрода, з якого вилітають електрони, негативний полюс джерела струму, а до іншого електрода позитивний, то електрони почнуть рухатися впорядковано.

Струм у вакуумі утворюють вільні електрони емісї.

Цим потоком можна керувати за допомогою електричного чи магнітного полів, що вчені й використали для створення різних електронних приладів.

Наприклад, за допомогою електричного поля потік електронів у вакуумі можна сформувати у вузький пучок, керуючи яким, можна отримувати різні зображення на екрані електронно-променевої трубки або дисплея, що використовуються в електронних осцилографах та старих моделях телевізорів (мал. 1.60).

Електричний струм у рідинах

Якщо в склянку з дистильованою водою опустити два електроди, які входять в електричне коло, то струму в колі не буде. Аналогічний результат отримаємо, коли воду замінимо гасом, спиртом чи іншою чистою рідиною. Це свідчить про те, що в таких рідинах відсутні вільні носії електричних зарядів і вони струму не проводять.

Якщо в склянку з водою додати кілька крапель сірчаної кислоти, то отриманий розчин буде поводити себе як провідник (мал. 1.61).

Мал. 1.61. Досліяження електричного струму в розчині електроліту у воgi www.testosvit.com

у розчинах і розплавах електролітів струм утворюють позитивні I негативні йони.

Яка ж природа вільних носіїв зарядів у розчині кислоти? На уроках хімії ви дізналися, що при розчиненні у воді кислоти, лугу чи солі (електролітів) відбувається електролітична дисоціація. Складні молекули електроліту розпадаються на позитивні й негативні йони, які за наявності електричного поля починають рухатися уздовж ліній електричного поля (мал. 1.62).

Позитивні йони (катіони) рухатимуться до негативного електрода, а негативні (аніони) - до позитивного. Тобто в розчині електроліту буде виникати електричний струм. На електродах йони нейтралізуються й осідають у вигляді нейтральних молекул чи атомів.

Струм у розчинах I розплавах електролітів супроводжується виділенням речовини на електродах.

Таким чином, при проходженні струму в розчинах електроліту відбувається виділення речовини на електродах. Це явище використовується для рафінування металів, добування алюмінію, покриття поверхні деталей машин захисними матеріалами, виготовлення копій деталей складної форми тощо.

Електричний струм у газах

У звичайному стані всі гази належать до діелектриків (непровідників електрики). Відомо, що коли розімкнути електроди вимикача, то струм у колі не проходитиме, хоча між контактами вимикача буде існувати різниця потенціалів. Це пояснюється тим, що всі гази за нормального стану мають нейтральні молекули, які не можуть утворити електричний струм під дією електричного поля. Проте за певних обставин і в них може проходити струм.

Наприклад, якщо взяти дві металеві пластини, між якими знаходиться повітря, і приєднати їх до джерела струму і гальванометра (мал. 1.63), то за звичайних умов струму в колі не буде, оскільки повітря не проводить електричного струму.

Якщо в проміжок між пластинами внести полум'я спиртівки, то стрілка гальванометра покаже наявність струму в колі (мал. 1.63). Таке явище у фі-

Мал. 1.62. Схема руху йонів у розчині електроліту пія gією електричного поля

Мал. 1.63. Установка gля gосліяжкення електропровіgності повітря
зиці називають несамостійним розрядом у газі. Подібне буде спостерігатися, якщо спиртівку замінити лампою, що випромінює ультрафіолетові промені. Утворення електричного струму в газах пояснюється тим, що під дією полум'я чи електромагнітного випромінювання відбувається йонізація, унаслідок якої електрони стають вільними. Приеднуючись до нейтральних молекул, вони можуть утворювати також негативні йони. Таким чином, у проміжку між пластинами одночасно перебувають нейтральні молекули, вільні електрони, негативні й позитивні йони.

Струм у газах - це потік негативних та позитивних йонів і вільних електронів.

У разі створення електричного поля заряджені частинки починають впорядковано рухатися, утворюючи електричний струм. Видалення йонізатора приведе до нейтралізації йонів і припинення струму.

Якщо напругу між електродами поступово збільшувати, то в певний момент енергія носіїв заряду стає достатньою, щоб утворювати нові йони і вільні електрони, стикаючись з нейтральними молекулами. Процес набуває лавиноподібного характеру, адже кількість вільних носіїв заряду стрімко збільшується. У колі різко зростає сила струму, температура газу підвищуеться, і він починае світитися.

Електричний розряд у газі можливий і без наявності йонізатора. Адже в повітрі завжди є деяка кількість заряджених частинок - як йонів, так і електронів. За значної напруги вони набувають енергії, достатньої для йонізації нейтральних молекул повітря. За таких умов створюється самостійний розряд, коли зовнішній йонізатор не потрібний.

До самостійних розрядів у природі належать блискавка (мал. 1.64), коронний та жевріючий розряди.

Мал. 1.64. Блискавка

Мал. 1.65. Зварювання металу за gопомогою електричної gуги

В описі електричного струму в газах окреме місце належить електричній дузі, яку використовують при зварюванні металевих деталей (мал. 1.65). Якщо два провідники, приеднані до високовольтного джерела, звести разом, то в місці їх контакту виділятиметься значна кількість теплоти і підвищуватиметься температура, що приведе до появи в газі значної кількості електронів, - відбуватиметься електронна емісія. При струмі в кілька сотень, чи навіть тисяч, ампер температура може сягати $3500 . .7000$ К. У такому стані газ яскраво світиться, а електроди плавляться.

Електрична дуга широко застосовується практично в усіх галузях техніки для зварювання деталей, плавлення металів тощо. Усьому світу відомі досягнення науковців Інституту електрозварювання імені Є.O. Патона НАН України. Завдяки їхнім дослідженням процес електрозварювання використовуеться в різних виробництвах, включаючи й космічну галузь.

Євген Оскарович Патон (1870-1953) - український інженер, засновник Інституту електрозварювання НАН України, здійснив дослідження в галузі розрахунку й міцності зварних конструкцій, механізації зварювальних процесів, наукових основ електричного зварювання.

1. 3 якою метою було проведено дослід Толмена-Стюарта?
2. Яка природа струму в металах?
3. Чому опір металевих провідників лінійно залежить від температури?
4. Яка природа електричного струму у вакуумі?
5. Яка природа струму в розчинах електролітів?
6. Які є види розряду в газах і яка іх природа?
7. Для чого застосовується електрична дуга?

§ 22. Напівпровіgники. Власна і gомішкова провіgність напівпровіgників

Ученими було помічено, що не всі речовини однаково проводять електрику: одні - добре, через що і дістали назву провідників, інші - майже не проводять, їх назвали діелектриками.

Пізніше з'ясувалося, що існують речовини, які не можна віднести ні до діелектриків, ні до провідників. Цю групу назвали напівпровідниками. Як з'ясувалося, цей клас речовин має надзвичайно цікаві й важливі для науки і техніки властивості. Це спонукало до їх подальшого вивчення, а згодом і до широкого використання.

Основною ознакою, за якою вирізняють цей клас речовин, є залежність опору напівпровідників від температури. Якщо взяти металевий провідник і нагрівати його в полум'ї, то його опір збільшуватиметься, про що свідчитиме зменшення сили струму в колі (мал. 1.66-а).

Якщо ж у коло увімкнути напівпровідник (мал. 1.66-б), то при його нагріванні сила струму в колі збільшуватиметься, що свідчитиме про зменшення його опору. Отже, на відміну від металевих провідників опір напівпровідників зменшується з підвищенням їх температури.

Мал. 1.67. Графіки залежності опорів металів і напівпровіgників віg температури

Порівняльний графік таких залежностей показано на малюнку 1.67 .

Специфічні термічні властивості напівпровідників пояснюються тим, що під час нагрівання зростає концентрація вільних носіїв заряду, які можуть створювати електричний струм. У переважної більшості напівпровідникових матеріалів хімічний склад не змінюеться при проходженні електричного струму. Це є www.testosvit.com

підставою стверджувати, що носіями зарядів у напівпровідників є електрони. Проте концентрація вільних електронів менша, ніж у провідників, і може змінюватися при зміні температури. Якщо в металах електрони перебувають у вільному стані i практично не зв'язані з атомами, то в напівпровідниках не всі електрони втратили зв'язок з атомами і стали вільними. Причина цього криеться в особливостях кристалічної структури напівпровідників.

Мал. 1.68. Структура кристалічної гратки кремнію

Для прикладу розглянемо кристалічну структуру типового напівпровідника - кремнію (Si) (мал. 1.68).

На зовнішній оболонці кожного атома Силіцію знаходяться 4 валентних електрони. До заповнення зовнішньої оболонки кожного атома не вистачає чотирьох електронів. Тому при утворенні кристала кремнію кожен атом ніби «позичає» в найближчих сусідів по одному валентному електрону, які стають спільними для сусідніх атомів. У свою чергу даний атом обмінюється електронами із сусідніми атомами. Таким чином, зовнішня оболонка кожного атома стає цілком заповненою, а між атомами встановлюються ковалентні зв'язки. На малюнку зображено плоску схему структури кристала кремнію.

За порівняно низьких температур в описаному вище ідеальному кристалі, який складається лише з однакових атомів і не має жодних дефектів кристалічної ''ратки, зовсім відсутні вільні носії заряду. Усі електрони зв'язані з атомами. Такий кристал не проводить електричного струму і є діелектриком.

Під час нагрівання кристала його температура підвищується, що означає збільшення амплітуди коливань атомів у кристалі. При цьому деякі ковалентні зв'язки порушуються, а електрони, які входили в ці зв'язки, стають вільними. На місці розірваного ковалентного зв'язку утворюється вакансія так звана дірка. А сам атом, який втратив електрон, стає позитивним йоном. Такий стан для конкретного атома триває доволі короткий час. Унаслідок теплового руху вільні електрони і дірки переходять від атома до атома, але їх концентрація в чистому напівпровіднику завжди однакова.

Якщо напівпровідник розмістити в електричному полі, то хаотичний рух електронів і дірок поступово впорядковуеться вздовж ліній напруженості цього поля. Електрони починають зміщуватися проти ліній напруженості, а дірки, які мають позитивний заряд, навпаки - вздовж ліній напруженості (насправді рухаютьwww.testosvit.com

Мал. 1.69. Атом Фосфору в кристалі кремнію

Мал. 1.70. Атом Ingio в кристалі кремнію

ся електрони, а дірки лише змінюють своє положення). Оскільки при нагріванні напівпровідника збільшуеться концентрація вільних електронів і дірок, то й провідність його при цьому збільшується, а отже, зменшується електричний опір.

Дослідження показали, що на провідність напівпровідників суттєво впливають домішки. Розглянемо, наприклад, кристал кремнію, який має домішку фосфору. Атом Фосфору займає в кристалі місце одного з атомів Силіцію, а його електрони входять в ковалентні зв'язки з атомами Силіцію (мал. 1.69).

Відомо, що атом Фосфору п'ятивалентний. Тому в ковалентні зв"язки входять лише чотири валентних електрони, а п’ятий - стає вільним. Дірка при цьому не утворюється. Таким чином, у кристалі з'являеться певна кількість вільних електронів. Такі напівпровідники дістали назву напівпровідників з провідністю n-типу. У них основними носіями заряду $є$ негативно заряджені частинки - електрони. Домішки, які створюють у напівпровіднику n-провідність, називають донорами, оскільки вони віддають свої електрони.

Якщо кристал кремнію міститиме деяку кількість атомів тривалентного елемента, наприклад Індію (мал. 1.70), то утворитьея напівпровідник p-типу. Атом Індію має три валентних електрони. Усі вони беруть участь у створенні ковалентних зв'язків між атомами в кристалі.

Оскільки один зв'язок залишається незайнятим, вакантним, то в цьому місці виникає дірка, яка створює електропровідність напівпровідника p-типу. Домішки, які створюють у напівпровіднику провідність p-типу, називають акцепторами.

1. Які речовини належать до класу напівпровідників?
2. Як опір напівпровідників залежить від температури?
3. у чому відмінність напівпровідників від металів?
4. Яка природа струму в напівпровідниках із власною провідністю?
5. Яка провідність у напівпровідників з донорними домішками?
6. Яка провідність у напівпровідників з акцепторною провідністю?

§ 23. Напівпровіgниковий giog. Застосування напівгровіgникових прилаgів

Дослідження провідності напівпровідників різних типів дало змогу розробити технології виготовлення напівпровідникових приладів. Одним з таких приладів є напівпровідниковий діод. В основі принципу його дії лежать властивості так званого p-n-переходу, який утворюеться на межі напівпровідників двох типів.

Щоб з'ясувати, які процеси відбуваються на межі двох напівпровідників, розглянемо електронно-дірковий p - n-перехід, який отримують завдяки зварюванню напівпровідників різних типів провідності (мал. 1.71-а).

У p-зоні основними носіями заряду є дірки, а в n-зоні електрони. Обидві частини до утворення контакту між ними були нейтральними. При зварюванні обох напівпровідників унаслідок дифузіі частина електронів з n-зони перейде в p-зону, де є дірки, і частину з них нейтралізують поблизу контакту. Дірки у свою чергу дифундуватимуть у n-зону, де рекомбінуватимуть з вільними електронами. Таким чином, концентрація вільних електронів і дірок у місці контакту суттєво зменшиться, що збільшить опір цієї частини напівпровідника.

Якщо напівпровідник з p-n-переходом увімкнути в електричне коло так, як показано на малюнку 1.72 -а, то під дією електричного поля носії заряду рухатимуться з обох частин до

Мал. 1.72. p - n-перехід в електричному колі
p-n-переходу і концентрація їх у місці контакту зростатиме, що суттєво зменшить його електричний опір.

Якщо змінити полярність джерела струму (мал. 1.72-б), то при замиканні кола ширина переходу збільшитьея, оскільки вільні носії заряду під дією електричного поля рухатимуться від місця контакту. Опір переходу суттєво зросте, а струм зменшиться. Отже, p-n-перехід має односторонню провідність.

Загалом, властивість p-n-переходу знайшла широке застосування в різних напівпровідникових приладах.

Усі прилади, побудовані на властивостях напівпровідників, поділяють на дві великі групи. До однієї належать прилади, в яких використовуються зміни властивостей напівпровідників у різних фізичних умовах. Такими є термістори, в яких використовується зміна опору напівпровідника внаслідок нагрівання. Конструкція його досить проста: напівпровідниковий циліндрик і металеві електроди, приєднані до нього.

Подібну конструкцію мають фоторезистори, в яких зміну опору спричиняє потік світла, що падає на напівпровідникову плівку. ІІх чутливість досить висока, що дає змогу застосовувати фоторезистори в різноманітних фотореле, фотоекспонометрах, сигнальних пристроях тощо.

До другої групи напівпровідникових приладів належать прилади, в яких використовуються властивості p-n-переходів. Крім напівпровідникових діодів, принцип дії яких розглянуто вище, подібну конструкцію мають напівпровідниковий фотоелемент і фотодіод, в яких один з електродів витотовляеться напівпрозорим. Через нього світло проникає до p - n-переходу і створює фото-EPC. Фотоелементи знайшли широке застосування в космічних апаратах для живлення систем життєзабезпечення космонавтів і роботи наукових приладів. Вони мають незначну масу і велику питому потужність. В умовах енергетичної кризи фотоелементи стають екологічно чистим джерелом енергії і все частіше застосовуються для побутових потреб.

За певних умов на межі p - n-переходу може випромінюватися світло. Цю властивість реалізовано в світлодіодах, які, маючи високий ККД, успішно конкурують з лампами розжарювання.

Подвійне застосування p - n-переходу дало змогу створити транзистор. Він має два пов'язані між собою p - n-переходи, технологія виготовлення яких подібна до технології виготовлення діода. За певної конфігурації його електродів один з них може впливати на силу струму і управляти нею в транзисторі. Тому така система $p-n-p$ - чи n - $p-n$-переходу транзистора працює в різних електронних приладах, виконуючи роль підсилювача чи електронного ключа.

Потреба зменшення розмірів електронних приладів привела до створення комбінованих твердотільних приладів, у яких основною функціональною частиною є штучно вирощений напівпровідниковий кристал. У процесі вирощування в ньому формуються транзистори, діоди, резистори, конденсатори та інші елементи електронних схем. Завдяки розробці таких інтегральних мікросхем створені сучасні комп’ютери та інші мініатюрні прилади.

Упровадження сучасних так званих нанотехнологій, які здійснюються на атомному рівні, дало змогу створити нові напівпровідникові конструкції з особливо цікавими і потрібними для практики властивостями, з якими ви ознайомитесь пізніше.

1. Яка основна властивість p-n-переходу?
2. Як утворюється p - n-перехід?
3. Як змінюється p-n-перехід під дією електричного лоля?
4. На які дві групи поділяються напівпровідникові прилади?
5. Назвіть прилади, в яких використовуються властивості однорідних напівпровідників.
6. У яких приладах використовуються p-n-переходи?
7. Чому в транзисторі ϵ три електроди?
8. Які переваги інтегральних схем?

Лабораторна робота ${ }^{1} 2$

Дослідження електричного кола з напівпровідниковим діодом

Мета. Вивчити основні властивості напівпровідникового діода.

Обладнання. Напівпровідниковий діод, амперметр, джерело струму, провідники, реостат, вимикач.

Теоретичні відомості

Основна властивість напівпровідникового діода полягає в тому, що він проводить електричний струм в одному напрямі. Цей струм називають прямим. Іноді на корпусі діода його напрям позначають стрілкою.

Якщо в коло з діодом увімкнути чутливий гальванометр або міліамперметр, то можна переконатися, що при зміні напряму струму він також проходить, щоправда, сила струму в такому випадку незначна. Цей напрям увімкнення діода називають зворотним.

Односторонню провідність напівпровідникових діодів використовують для випрямляння змінних струмів, наприклад, у

Мал. 1.73. Прилаgu go лабораторної роботи

радіотехнічних устаткуваннях (радіоприймачі, телевізори, комп'ютери тощо), у зарядних пристроях, на електротранспорті (тролейбуси), в електрометалургії тощо.

Можна також пересвідчитися, що сила струму в діоді залежить від температури та освітленості p-nпереходу: вона зростає при їх збільшенні.

Виконання роботи

1. Ознайомитися із зовнішнім виглядом діода, записати його маркування.
2. Скласти послідовне електричне коло із джерела струму, амперметра, реостата і вимикача. Вивести повзунок реостата на найбільший опір.
3. Замкнути коло і спостерігати за показами амперметра. Установити повзунок реостата так, щоб амперметр показував струм $0,1 \mathrm{~A}$.
4. Розімкнути коло і в нього увімкнути діод послідовно з амперметром. Відмітити покази стрілки амперметра. Якщо в колі проходить струм, помітити, які полюси джерела струму приєднані до кожного з виводів діода.
5. Поступово змінюючи положення повзунка реостата, стежити за показами амперметра. Накреслити графік зміни струму в діоді при зміні опору реостата.
6. Установивши повзунок реостата в середне положення, змінити полярність увімкнення діода в коло.
7. Обережно підігріваючи діод, стежити за показами амперметра.
8. За результатами дослідів зробити висновки як відповідь на питання: чи однаково проводить діод струм при різних полярностях його увімкнення в коло? Як залежить опір діода від температури?

Головне в posgiлi 1

1. У природі поряд із гравітаційною взаемодією існує електромагнітна взаємодія, інтенсивність якої у 10^{39} разів більша за гравітаційну.
2. Тіла, між якими спостерігається електромагнітна взаємодія, мають електричний заряд. Електричний заряд - це властивість фізичного тіла, яка проявляеться у взаємодії з електромагнітним полем. Розрізняють два види електричних зарядів - позитивні й негативні.

Тіла, які мають електричний заряд, взаемодіють між собою таким чином, що однойменно заряджені тіла відштовхуються, а різнойменно - притягуються.
3. Тіло, що має електричний заряд, створює електричне поле. У системі відліку, де тіло нерухоме, це поле називають електростатичним. Воно є частинним проявом єдиного електромагнітного поля.
4. Напруженість електричного поля - це силова його характеристика, що дорівнює відношенню сили, яка діє на позитивно заряджене тіло, до значення цього заряду:

$$
\vec{E}=\frac{\vec{F}}{Q} .
$$

В електростатичному полі справджуеться принцип суперпозиції: напруженість електричного поля заряджених тіл у будь-якій точці дорівнює векторній сумі напруженостей сумарного поля, створеного всіма зарядженими тілами в цій точці:

$$
\vec{E}=\vec{E}_{1}+\vec{E}_{2}+\ldots+\vec{E}_{n} .
$$

Структура електричного поля зображується лініями, які починаються на тілах із позитивним зарядом і закінчуються на тілах з негативним зарядом.
5. Взаємодія точкових нерухомих заряджених тіл відбуваеться за законом Кулона: сила взаємодії двох заряджених точкових тіл пропорційна значенням їх заряду й обернено пропордійна квадрату відстані між ними:

$$
F=k \frac{Q_{1} \cdot Q_{2}}{r^{2}} .
$$

6. Електричне поле може виконувати роботу з переміщення заряджених тіл. Значення цієї роботи не залежить від шляху i форми траєкторії і визначається положенням початкової i кінцевої точок поля, між якими відбувалося переміщення:

$$
A=Q E\left(l_{1}-l_{2}\right) .
$$

www.testosvit.com
7. Кожна точка електричного поля характеризується потенціалом - фізичною величиною, яка визначае потенціальну енергію зарядженого тіла в даній точці. Вона дорівнює відношенню потенціальної енергії зарядженого тіла до його заряду:

$$
\varphi=\frac{W_{\mathrm{n}}}{Q} .
$$

Потенціал електричного поля вимірюеться у вольтах (B).
8. Потенціал зарядженого тіла пропорційний до його заряду. Фізична величина, яка характеризує залежність потенціалу зарядженого тіла від його заряду, називається електроємністю:

$$
C=\frac{Q}{\varphi} .
$$

Електроемність тіл вимірюеться у фарадах (Ф).
9. Для накопичення значних зарядів при незначній різниці потенціалів використовується конденсатор - система ізольованих провідників. Конденсатори з'єднують паралельно і послідовно. Електроємність батареї паралельно з'еднаних конденсаторів дорівнює сумі електроємностей усіх конденсаторів:

$$
C=C_{1}+C_{2}+C_{3}+\ldots+C_{n} .
$$

Електроємність ланцюжка послідовно з'єднаних конденсаторів менша за найменше значення електроємності конденсатора, який входить у з'єднання:

$$
\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\ldots+\frac{1}{C_{n}}
$$

10. Електричне поле зарядженого конденсатора має енергію, яка визначається через взаємозв'язані його параметри електроємність й електричний заряд або ріницю потенціалів:

$$
W=\frac{C(\Delta \varphi)^{2}}{2}, W=\frac{Q^{2}}{2 C} .
$$

11. Електричний струм - це напрямлений рух заряджених частинок або тіл. Він існує за наявності вільних носіїв заряду та електричного поля або інших чинників, які спонукають їх рухатися в певному напрямі.
12. Сила струму характеризуе швидкість перенесення заряду частинками, які створюють струм, через поперечний переріз провідника:

$$
I=\frac{\Delta Q}{\Delta t} .
$$

Сила електричного струму вимірюеться в амперах (A).
13. Закон Ома для однорідної ділянки кола: сила струму в колі пропорційна напрузі, прикладеній до даної ділянки кола, й обернено пропорційна її опору:

$$
I=\frac{U}{R} .
$$

Закон Ома для повного кола враховує параметри внутрішньої та зовнішньої ділянок кола:

$$
I=\frac{\mathscr{E}}{R+r} .
$$

14. Опір провідників залежить від їх геометричних розмірів (довжини l і площі поперечного перерізу S) і матеріалу, з якого вони виготовлені:

$$
R=\rho \frac{l}{S}
$$

15. Опір металевих провідників під час нагрівання збільшуеться, а опір напівпровідників зменшується. Опір напівпровідника залежить від його температури, освітленості, дії на нього електричного поля, випромінення, а також від наявності домішок в структурі речовин.
16. У чистих напівпровідниках має місце так звана власна провідність, коли носіями заряду є вільні електрони й дірки, концентрація яких однакова. У напівпровідниках з домішками виникає домішкова електропровідність двох типів: n-типу, коли основними вільними носіями заряду є електрони, і p-типу, коли основними носіями заряду є дірки.
17. Електронно-дірковий перехід ($p-n$-перехід) має односторонню провідність. Створення в кристалах напівпровідників кількох p-n-переходів дає можливість виготовляти транзистори та інтегральні схеми.

Posдin 2

Засвоївши матеріал цього розділу, ви будете знати:

- природу електромагнітної взаємодії;
- дію магнітного поля на провідник зі струмом;
- принцип дії електродвигуна;
- закон електромагнітної взаємодії;
- будову трансформатора.

Ви зможете пояснити:

- дію магнітного поля на рухомі електричні заряди;
- магнітні властивості речовини;
- утворення індукційного струму;
- дію трансформатора.

Ви будете вміти:

- графічно зображувати структуру магнітного поля;
- визначати напрям індукційного струму, сил Лоренца й Ампера;
- експериментально досліджувати явища електромагнітної індукції та магнітних властивостей речовини;
- розв'язувати задачі на взаємодію магнітного поля з провідником зі струмом, застосовуючи формули сили Лоренца і сили Ампера, закон електромагнітної індукції, EPC самоіндукції, енергії магнітного поля, визначати характеристики змінного струму, коефіцієнт трансформації.

§ 24. Магнітне поле

Узагальнення вченими результатів теоретичних і експериментальних досліджень різних взаємодій у природі дали підстави зробити висновок, що матерія може існувати не лише у формі речовини, а й у формі поля. У попередніх клаcax, вивчаючи фізику, ви дізналися про існування електричного і магнітного полів, завдяки яким взаемодіють наелектризовані тіла. Роботи Дж. Максвелла, М. Фарадея та інших учених показали, що ці поля пов'язані між собою і фактично ϵ проявом единого, більш універсального електромагнітного поля. I лише вибір системи відліку визначає, що ми спостерігаємо - електричне чи магнітне поле. Вивчити всі властивості електромагнітного поля відразу дуже складно. Тому у фізиці вивчають поступово окремі прояви цього поля. Одним з етапів вивчення властивостей електромагнітного поля є вивчення магнітного поля, яке проявляеться у випадку, коли електрично заряджені частинки чи тіла в певній системі відліку рухаються рівномірно. У цьому розділі розглядаються не лише умови, за яких магнітне поле спостерігається, а й фізичні величини, що описують його властивості, закони, за якими взаємодіють магнітні поля і речовинні об'єкти. Знання цих законів дає змогу здійснювати важливі для практики розрахунки результатів взаємодії магнітного поля з різними фізичними тілами.

Явища, які ми називаємо магнітними, відомі людям давно. Незвичайні властивості магнетиту (одного з видів залізної руди) використовувалися в Стародавньому Китаї, а потім і в інших країнах для виготовлення компасів. Магнітам приписувалися магічні властивості, їх дією пояснювали нерозгадані явища природи, намагалися лікувати хвороби.

Систематичні дослідження магнітів провів англійський фізик У. Гільберт у XVI ст. Він не тільки дослідив взаємодію постійних магнітів, а й установив, що Земля - це велетенський магніт.

Учення про магніти тривалий час розвивалося відособлено, як окрема галузь науки, аж поки низка відкриттів і теоретичних досліджень у XIX ст. не довели його органічний зв'язок з електрикою.

Мал. 2.1. Досліg Ерстеgа

Одним з фундаментальних доказів єдності електричних і магнітних явищ є результат досліду Г.X. Epстеда, данського фізика, який у 1820 р. помітив, що магнітна стрілка змінюе свою орієнтацію поблизу провідника зі струмом (мал. 2.1).

Очевидним було, що причиною цього є електричний струм - напрямлений рух заряджених частинок у провіднику. 3 описом цього досліду ви ознайомлювалися в 9 -му класі.

Магнітну дію рухомих заряджених тіл досліджував також американський фізик Г. Роуланд у 1878 р. Основною частиною його дослідної установки (мал. 2.2) був ебонітовий диск, покритий тонким шаром золота 1. Диск насаджувався на вал і міг вільно обертатися між двома скляними дисками 2. Над ебонітовим диском підвішувалися на тонкій нитці дві намагнічені голки 3 , які були чутливими індикаторами магнітного поля. Коли диск зарядили і почали обертати, голки повернулись на певний кут, реєструючи наявність магнітного поля. При збільшенні швидкості обертання диска кут повертання намагнічених голок збільшувався.

Дослідами Г. Роуланда підтверджене відкриття Ерстеда про зв'язок магнітного поля з рухомими електрично зарядженими частинками або тілами.

Генрі Роуланд (1848-1901) - американський фізик; наукові праці у сфері електродинаміки, оптики, спектроскопії і теплоти. Він установив, що заряджені тіла, якщо вони рухаються, викликають магнітну взаємодію.

Магнітні явища хоча й пов'язані з електричними, проте не тотожні їм. Це також підтверджуеться дослідами.

Якщо взяти два довгі паралельні провідники й приєднати їх до джерела струму, то помітимо, що провідники, якими проходить струм у протилежних напрямах, відштовхуються один від одного (мал. $2.3-\mathrm{a}$). Якщо скласти коло так, щоб у провідниках струми були одного напряму, то провідники притягуватимуться один до одного (мал. 2.3-б).

Дія провідника зі струмом на магнітну стрілку чи на інший про-

Мал. 2.2. Головна частина установки Роуланда яля виявлення магнітного поля рухомого електрично заряgженого guска відник зі струмом відбувається за відсутності безпосереднього контакту між ними, завдяки наявності навколо провідника магнітного поля.

Магнітне поле має свої особливості, які вирізняють його з-поміж інших полів:

1) магнітне поле спостерігається завжди, коли е рухомі електрично заряджені частинки або тіла;
2) магнітне поле діє лише на рухомі заряджені частинки або тіла.

Інші властивості магнітного поля будуть з'ясовані далі.

Мал. 2.3. Магнітна взаемоgія провіgників зі струмом

1. Які явища свідчать про існування магнітного поля?
2. які доспіди підтверджують зв'язок магнітного поля з рухом заряджених частинок або тіл?
3. Які досліди свідчать про відмінність магнітного поля від електричного?
4. Які основні властивості магнітного поля?

§ 25. Магнітна інgукція

Спостереження магнітних явищ у природі, у лабораторіі, на виробництві показують, що дія магнітного поля на фізичні тіла чи провідники зі струмом за одних і тих самих умов може бути різною.

> Iнтенсивність магнітної взаємодії може бути різною в різних умовах.

Якщо для виявлення дії магнітного поля Землі магнітну стрілку компаса доводиться встановлювати на спеціальних опорах, які суттєво зменшують силу тертя, то дія електромагніта, в обмотках якого проходить електричний струм, буде помітною навіть тоді, коли стрілка вільно лежатиме на поверхні стола.

По-різному взаємодіють і паралельні провідники зі струмом. Сила взаемодії цих провідників буде змінюватися, якщо змінювати силу струму в них або відстань між ними, - вона зростатиме при збільшенні сили струму і наближенні їх один до одного.

В усіх таких і подібних випадках говорять про «слабке" або «сильне* поле. Подібне траплялося під час вивчення електростатичного поля, коли йшлося про дію електричного поля на нерухомі заряди. Як відомо, силову дію електричного поля характеризуе напруженість поля. Для характеристики діі магнітного поля на провідники зі струмом застосовують фізичну величину, яку називають магнітною індукцією. Вона є векторною величиною, оскільки характеризуе силову дію магнітного поля. І̆ї позначають буквою \bar{B}. Подібно до напруженості електричного поля магнітна індукція є силовою характеристикою магнітного поля. Довгий час дослідження магнітного поля проводилися з використанням магнітної стрілки на вістрі і магнітна індукція як характеристика магнітного поля була пов'язана з його дією на магнітну стрілку. Зокрема, домовилися, що за напрям магнітної індукції приймається напрям, який указує північний полюс стрілки.

Магнітна індукція - векторна величина I має напрям.
Дослідимо за допомогою стрілки магнітне поле дротяного витка, у якому проходить електричний струм. Замкнувши коло живлення витка, почнемо обносити стрілку навколо нього. Орієнтація стрілки в просторі буде змінюватися. У різних точка вона матиме різну орієнтацію. Найвідчутнішою дія магнітного поля витка буде тоді, коли стрілка перебуватиме в його центрі (мал. 2.4).

Отже, магнітна індукція поля витка чи прямокутної рамки зі струмом має максимальне значення в центрі витка чи рамки. Поздовж-

Мал. 2.4. Поздовжня вісь магнітної стрілки, яка знахоgиться в центрі витка зі струмом, перпенgикулярна go його площини ня вісь магнітної стрілки буде перпендикулярною до площини витка. Подібне спостерігаеться і тоді, коли замість витка використати прямокутну рамку або плоский контур зі струмом довільної форми.

На відміну від напруженості електричного поля, магнітна індукція як векторна величина не збігається з напрямом сили, що діє на провідник зі струмом. З'ясуемо, як напрям магнітної індукції залежить від напряму електричного струму у витку.

> Магнітна індукція - це силова характеристика магнітного поля. Вона визначає силу, яка діє на провідник зі струмом чи рухому частинку.

Відмітивши орієнтацію стрілки при певному напрямі струму у витку, змінимо напрям останнього на протилежний. Магнітна стрілка повернеться на 180°, показуючи, що напрям магнітної індукції також змінився. Отже, напрям магнітної індукції витка залежить від напряму струму в ньому.

Аби щоразу, коли потрібно знати напрям магнітної індукціі, не проводити спеціальні вимірювання, користуються правилом правого гвинта (свердлика). Це правило полегшує запам'ятовування зв'язку між напрямом струму у витку і напрямом магнітної індукції його поля. Для цього потрібно уявити, як буде рухатися правий гвинт, перпендикулярно приставлений до площини витка, при обертанні його головки за напрямом струму у витку.

Мал. 2.5. Визначення напряму магнітної іняукції витка зі струмом

Мал. 2.6. Досліяження магнітного поля прямого провіgника зі струмом за gопомогою пробного витка

Якщо напрям обертання правого гвинта, розміщеного в центрі витка зі струмом, збігається з напрямом струму, то його поступальний рух показує напрям магнітної індукції (мал. 2.5).

Магнітне поле існуе також навколо прямого провідника зі струмом. На підтвердження цього магнітну стрілку будемо обносити навколо провідника, не змінюючи відстані від нього (мал. 2.6). У різних точках їі орієнтація в просторі буде різною, але вісь стрілки завжди буде дотичною до траєкторії.

Відповідно й індукція магнітного поля провідника зі струмом у цих точках матиме такий самий напрям.

Зі зміною напряму струму в провіднику на протилежний магнітна стрілка повернеться на 180° і покаже напрям маг-

Мал. 2.7. Визначення напряму магнітної інgукції поля прямого провіяника зі струмом за допомогою правого гвинта (сверgлика) нітної індукції, який також буде протилежний до попереднього.

Отже, напрям магнітної індукції прямого провідника залежить від напряму струму в ньому. Для полегшення його визначення, як і в попередньому випадку, на основі аналізу результатів експерименту, сформульовано правило правого гвинта (мал. 2.7): якщо напрям поступального руху правого гвинта збігається з напрямом струму в провіднику, то напрям його обертання показує напрям магнітної індукції.

Для вимірювання магнітної індукції використовується одиниця, яка називається тесла (Тл). Цю одиницю названо на честь відомого сербського вченого і винахідника Ніколи Тесли.,
www.testosvit.com

Нікола Тесла (1856-1943) - уродженець Сербї, винахідник I фізик. Найбільш відомий своїми винаходами в галузі електротехніки і радіотехніки; працював інженером на підприємствах Угорщини, Францїі, США.

На практиці використовуються й менші одиниці:

$$
\begin{aligned}
1 \text { мілітесла } & =1 \text { мТ } л=10^{-3} \mathrm{~T} \text {, } \\
1 \text { мікротесла } & =1 \text { мкТл }=10^{-6} \mathrm{~T} .
\end{aligned}
$$

Значення магнітної індукції вимірюють приладами, які називаються індикаторами магнітної індукції, або магнітометрами (мал. 2.8).

У багатьох випадках замість прямих вимірювань користуються формулами, які пов'язують характеристики магнітного поля з характеристиками провідника. Таким прикладом може бути розрахунок модуля магнітної індукції прямого провідника зі струмом. Експериментальні дослідження показують, що магнітна індукція поля прямого провідника пропорційна силі струму в ньому і обернено пропорційна відстані від провідника до досліджуваної точки поля:

$$
B=\frac{k I}{r} .
$$

Магнітна індукція прямого провідника зі струмом пропорційна силі струму в ньому і обернено пропорційна відстані від провідника до точки спостереження.

Коефіцієнт пропорційності залежить від вибору системи одиниць вимірювання. У Міжнародній системі одиниць (СI) він має значення $k=\frac{\mu_{0}}{2 \pi}$, де μ_{0} - магнітна стала, числове значення якої дорівнюе $1,256 \cdot 10^{-6} \mathrm{H} / \mathrm{A}^{2}$.

Тоді остаточно для розрахунків модуля магнітної індукції поля прямого провідника зі струмом маємо формулу:

$$
B=\frac{\mu_{0} I}{2 \pi r},
$$

Мал. 2.8. Лабораторний магнітометр яля шкільних gocnigiв

де μ_{0} - магнітна стала; I - сила струму в провіднику; r - відстань від даної точки поля до провідника.

Задача. Яке значення модуля магнітної індукції в точці поля, віддаленій на 3 см від нескінченно довгого провідника, яким проходить струм 6 A ?

Дано:
Розв'язання
$r=3 \mathrm{~cm}$,
$I=6 \mathrm{~A}$.
$B-$?

§ 26. Дія магнітного поля на провіgник зі струмом. Сила Ампера

Оскільки навколо провідників зі струмом виникає магнітне поле, природно припустити, що в магнітному полі на них діє сила.

На провідник зі струмом у магнітному полі діє сила.

Дослідимо, від чого залежать модуль і напрям цієї сили. Для цього скористаємось установкою, у якій прямий провідник підвішено в магнітному полі постійного магніту так, що його горизонтальна частина знаходиться між полюсами (мал. 2.9).

Провідник підвішено на гачках штатива так, що його можна вмикати в електричне коло, силу струму в якому регулюють за допомогою реостата. Амперметр дає змогу вимірювати силу струму в колі.

Замкнувши електричне коло, помітимо, що провідник зміститься від положення рівноваги, а динамометр покаже певне значення сили. Збільшимо силу струму в провіднику в 2 рази і побачимо, що сила, яка діє на провідник, також збільшилася в 2 рази. Будь-які інші зміни сили струму в провіднику спричинять відповідні зміни сили, що діє на провідник. Зіставлення отриманих результатів дає змогу зробити висновок, що сила F, яка діє в магнітному полі на провідник зі струмом, пропорційна силі струму I в ньому:

$$
F \sim I .
$$

Сила, що діє на провідник зі струмом у магнітному полі, називається силою Ампера.

Мал. 2.9. Установка яля вивчення giï магнітного поля на провіgник зі струмом

Сила Ампера пропорційна силі струму в провіднику.

Розмістимо ще один магніт поряд з першим. Довжина частини провідника, яка перебуває в магнітному полі, збільшиться приблизно в 2 рази. Значення сили, що діє на провідник, також збільшиться приблизно в 2 рази. Отже, сила F, яка діє на провідник зі струмом у магнітному полі, пропорційна довжині частини провідника Δl, яка міститься в магнітному полі:

$$
F \sim \Delta l .
$$

Сила Ампера пропорційна довжині активної частини провідника.

Сила збільшиться також тоді, коли застосуемо інший, потужніший магніт з більшою магнітною індукцією. Це дасть підстави зробити висновок про залежність сили F від магнітної індукції поля B :

$$
F \sim B .
$$

Можна переконатися, що найбільшою сила буде тоді, коли кут між магнітною індукцією поля магніта і провідником становитиме $\alpha=90^{\circ}$. Якщо цей кут дорівнюе нулю, тобто магнітна індукція буде паралельною провіднику, то сила дорівнюватиме нулю. Звідси неважко зробити висновок про залежність сили Ампера від кута між магнітною індукцією і провідником.

Остаточно для розрахунку сили Ампера маємо формулу

$$
F_{\mathrm{A}}=B I \Delta l \sin \alpha .
$$

Напрям сили Ампера визначаеться за правилом лівої руки (мал. 2.10): якщо ліву руку розмістити так, щоб лінії магнітної індукцї входили в долоню, а чотири пальці вказували напрям струму, то відставлений під кутом 90° великий палець покаже напрям сили, яка діє на провідник зі струмом у магнітному полі.

Мал. 2.10. За допомогою лівої руки можна визначити напрям сили Ампера

Якщо ліву руку розмістити так, щоб лінії магнітної індукції входили в долоню, а чотири пальці вказували напрям струму, то відставлений під кутом 90° великий палець покаже напрям сили, яка діє на провідник зі струмом у мдгнітному полі.

§ 27. Взаємоgія провіgників зі струмом

Дією сили Ампера полснюеться взаємодія паралельних провідників зі струмом (мал. 2.11).

Кожен із цих провідників має своє магнітне поле, яке діє на сусідній провідник зі струмом i спричиняє силу Ампера. Так, провідник $A A^{\prime}$, яким проходить струм I_{1}, має магнітне поле, модуль індукції B_{1} якого, як зазначалося раніше, дорівнює

$$
B_{1}=\frac{\mu_{0} I_{1}}{2 \pi r},
$$

де r - відстань від провідника до точки спостереження.

Якщо провідник $C C^{\prime}$ завдовжки

Мал. 2.11. На кожен паралельний провіgник gie сила Ампера, викликана gіею магнітного поля іншого провіяника Δl перебуває на відстані r від провідника $A A^{\prime}$ і по ньому тече струм I_{2}, то на нього діє сила Ампера F_{A}, оскільки він перебуває в магнітному полі провідника $A A^{\prime}$.' Значення цієї сили дорівнює

$$
F_{21}=B_{1} I_{2} \Delta l \sin \alpha .
$$

Оскільки провідники паралельні і кут між провідником $C C^{\prime}$ і вектором магнітної індукції B_{1} дорівнюе 90°, то $\sin \alpha=1$.

Підставимо значення магнітної індукції поля провідника $A A^{\prime}$:

$$
F=\frac{\mu_{0} I_{1} I_{2} \Delta l}{2 \pi r} .
$$

Силу взаємодїі двох паралельних провідників зі струмом можна визначити, знаючи лише відстань між ними і силу струму в них.

Як і при будь-якій іншій взаємодії, така сила, згідно з третім законом Ньютона, діє на кожен з провідників. Лише напрями цих сил взаємно протилежні.

Таким чином, два паралельні провідники взаємодіють між собою завдяки магнітним полям, що утворюютьея навколо провідників, у яких тече електричний струм.

Задача. Визначити модуль сили Ампера, яка діє на провідник зі струмом завдовжки 25 см у магнітному полі з індукцією 0,04 Тл, якщо кут між вектором магнітної індукції і напрямом струму 30°. Сила струму в провіднику дорівнюе 0,25 A.

Дано:
$\Delta l=25 \mathrm{~cm}$, $B=0,04$ Тл, $\alpha=30^{\circ}$, $I=0,25$ A. F_{A} - ?

Розв'язання

На провідник зі струмом у магнітному полі діє сила

$$
F_{\mathrm{A}}=B I \Delta l \sin \alpha .
$$

Підставимо значення всіх величин:

$$
\begin{aligned}
& F_{\mathrm{A}}=0,04 \mathrm{~T} \pi \cdot 0,25 \mathrm{~A} \cdot 0,25 \mathrm{M} \cdot 0,5= \\
& =0,00125 \mathrm{H}=1,25 \cdot 10^{-3} \mathrm{H} .
\end{aligned}
$$

Відповідь: модуль сили дорівнює $1,25 \cdot 10^{-3} \mathrm{H}$.

1. Яке явище описує сила Ампера?
2. Якою може бути установка для дослідження сили Ампера?
3. Від яких величин залежить сила Ампера?
4. Яке значення кута між напрямом струму і силою Ампера при взаємодії паралельних провідників?
5. Як визначається напрям сили Ампера?

Вправа 14

1. На прямий провідник завдовжки $0,5 \mathrm{~m}$, розміщений перпендикулярно до ліній магнітної індукції поля, значення якої $2 \cdot 10^{-2}$ Тл, діє сила $0,15 \mathrm{H}$. Знайти силу струму в провіднику.

2*. Між полюсами магніту підвішено горизонтально на двох невагомих нитках прямий провідник завдовжки $0,2 \mathrm{~m}$ і масою 10 г. Магнітна індукція однорідного поля перпендикулярна до провідника і напрямлена вертикально вгору. На який кут від вертикалі відхиляться нитки, які підтримують провідник, якщо в ньому проходить струм силою 2 A , а значення магнітної індукції 0,49 Тл?

3*. У горизонтальному провіднику завдовжки 20 cm і масою 4 г проходить струм силою 10 A . Визначити модуль і напрям магнітної індукції, за якої сила Ампера зрівноважить силу тяжіння.

4*. Двопровідною лінією, розташованою в повітрі, проходить струм силою 5 A . Яка сила діє на одиницю довжини кожного провідника, якщо відстань між провідниками становить 40 cm ?

§ 28. Використання gil сили Ампера в техніці

Силу Ампера застосовують для перетворення енергії електричного струму в механічну енергію провідника. Таке перетворення відбувається в багатьох електротехнічних пристроях. Розглянемо деякі з них.

Електровимірювальні прилади магнітоелектричной системи

Електровимірювальний прилад магнітоелектричної системи складається з постійного магніту і дротяної рамки, розміщеної між полюсами (мал. 2.12). Полюси магніту мають спеціальні насадки, які дають можливість створити таке магнітне поле, що повертання рамки в ньому не спричиняе зміну кута між магнітною індукцією і провідниками рамки.

Цей кут завжди дорівнює 90°. До рамки прикріплені дві спіральні пружини, які підводять електричний струм до рамки. Під час проходження електричного струму

Мал. 2.12. Буgова електровимірювального прилаgу магнітоелектричної системи в провідниках рамки виникає сила Ампера, пропорційна силі струму в рамці. Чим більша сила діє на провідники рамки, тим більше закручуються пружини, в яких виникають відповідні сили пружності. Рамка припинить повертання тоді, коли момент сили Ампера дорівнюватиме моменту сили пружності.

Стрілка, прикріплена до рамки, показує кут, при якому моменти сил зрівноважуються. Цей кут пропорційний силі струму в рамці.

Електричний двигун постійного струму

Електричний двигун призначений для перетворення енергії електричного струму в механічну. Принцип його дії схожий до дії електровимірювального приладу, описаного вище. Але в його конструкції відсутня пружина. Струм до рамки підводиться через спеціальні контакти-щітки (мал. 2.13). При замиканні кола живлення рамка взаємодіє з магнітним полем постійного магніту або електромагніту і повертається

Мал. 2.13. Буgова gвuгуна постійного струму

доти, доки ії площина не стане перпендикулярною до магнітної індукції. Щоб вона поверталася і далі, потрібно змінити напрям струму в рамці, що приведе до зміни напряму сили Ампера, яка діє на рамку в магнітному полі. Ця дія здійснюеться в двигуні завдяки наявності двох нерухомих щіток, приеднаних до джерела струму, i двох півкілець, з'еднаних з кінцями обмотки якоря, що обертаються разом з ним. На малюнку 2.14 -а показано момент, коли струм у якорі такий, що його полюси відштовхуються від однойменних полюсів статора. Після повертання на деякий кут якір буде в положенні, коли однойменні полюси притягаються (мал. 2.14-б). Якби якір не мав маси, то він зупинився б у цьому положенні. Але внаслідок інерції він проходить положення рівноваги. У цей час завдяки півкільцям, приеднаним до струмопідвідних щіток (мал. 2.14-в), напрям струму в якорі змінюється на протилежний і обертання якоря продовжуеться (див. мал. 2.14-а).

У промислових зразках електродвигунів постійного струму ротор має декілька обмоток (рамок). Тому і кількість пар ковзних контактів на ньому більша: вона відповідає кількості обмоток. У цілому такий пристрій називають колектором. У новітніх моделях двигунів роль колектора виконує спеціальний пристрій з використанням електронних приладів.

Мал. 2.14. Схеми, які пояснюють giю колекторного електроgвигуна постійного струму

Таким чином, дія сили Ампера знайшла широке практичне використання у різних технічних пристроях: електровимірювальних приладах, електричних двигунах тощо.

§ 29. Сила Лоренца

Силою Лоренца $F_{\text {л }}$ називають силу, яка діє на електрично заряджену частинку, що рухається в електромагнітному полі, визнаючи дії на неї електричного й магнітного полів одночасно. Це виражається формулою

$$
\vec{F}_{\mathrm{J}}=\vec{F}_{\mathrm{e}}+\vec{F}_{\mathrm{m}},
$$

де \vec{F}_{e} - електрична складова сили Лоренца, яка описуе взаемодію частинки з електричним полем і дорівнює $\vec{F}_{\mathrm{e}}=e \vec{E}$; $\vec{F}_{\text {м }}$ - магнітна складова сили Лоренца, яка описує взаємодію частинки з магнітним полем.

Сила Лоренца діє на рухому електрично заряджену частинку в електромагнітному полі.

Для спрощення визначення $F_{\text {м }}$ розглянемо випадки, коли електрична складова $\vec{F}_{\mathrm{e}}=0$, а сила Лоренца дорівнює магнітній складовій.

З'ясуємо, як можна обчислити силу, що діє на рухому заряджену частинку внаслідок її взаємодії з магнітним полем.

Як відомо, електричний струм у провіднику - це напрямлений рух заряджених частинок. Згідно з електронною теорією сила струму в провіднику визначається за формулою

$$
I=e n v S \text {, }
$$

де I_{N} - сила струму; e - заряд частинки, що створює струм; $n=\frac{N}{V}$ - концентрація заряджених частинок у провіднику; v - швидкість напрямленого руху частинок; S - площа поперечного перерізу провідника.

Дія магнітного поля на провідник зі струмом є результатом дії магнітного поля на всі рухомі заряджені частинки в провіднику. Тому формулу сили Ампера можна записати з урахуванням виразу струму в електронній теорії:

$$
F_{\mathrm{A}}=\operatorname{Ben} v S \Delta l \sin \alpha,
$$

або

$$
F_{\mathrm{A}}=B e \frac{N}{V} S v \Delta l \sin \alpha .
$$

Якщо врахувати, що

$$
S \Delta l=V \text {, то } F_{\mathrm{A}}=B e N v \sin \alpha .
$$

Якщо сила Ампера є рівнодійною всіх сил, що діють на N заряджених частинок, то на одну частинку діятиме сила в N разів менша:

$$
F=\frac{F_{\mathrm{A}}}{N}=B e v \sin \alpha .
$$

Цей вираз і е формулою для розрахунку магнітної складової сили Лоренца:

$$
F_{\pi}=e v B \sin \alpha .
$$

Магнітна складова сили Лоренца

$$
F_{\pi}=e v B \sin \alpha .
$$

Аналіз цієї формули дає можливість зробити висновки, що:

1) магнітна складова сили Лоренца діє лише на рухому заряджену частинку ($v \neq 0$);
2) магнітна складова сили Лоренца не діє на заряджену частинку, що рухається вздовж лінії магнітної індукції ($\alpha=0$).

Напрям сили Лоренца, як і сили Ампера, визначається за правилом лівої руки. При цьому потрібно пам'ятати, що це справедливо для позитивно заряджених частинок. Якщо визначати напрям сили Лоренца, що діє на електрон (чи іншу негативно заряджену частинку), то при застосуванні правила лівої руки потрібно уявно змінювати напрям швидкості руху на протилежний.

Сила Лоренца напрямлена завжди під кутом до швидкості частинки, тому вона надає їй доцентрового прискорення (мал. 2.15).

Для випадку, коли $\alpha=90^{\circ}$, тоді $e v B=\frac{m v^{2}}{R}$.
Звідси

$$
R=\frac{m v}{e B} .
$$

Мал. 2.15. Графічне зображення сили Лоренца

Мал. 2.16. Магнітне поле зміщує електронний пучок у трубці осцилографа

Отже, заряджена частинка, потрапляючи в магнітне поле, починае рухатися дугою кола. При інших значеннях $0<\alpha<90^{\circ}$ траєкторія руху зарядженої частинки в магнітному полі набуває форми спіралі.

Спостерігати дію сили Лоренца можна за допомогою елек-тронно-променевої трубки, яка е в багатьох осцилографах (мал. 2.16). Якщо ввімкнути живлення осцилографа, то на екрані його електронно-променевої трубки будемо спостерігати світлу пляму - місце падіння на екран рухомих електронів. Якщо збоку до трубки осцилографа піднести магніт, то пляма зміститься, що свідчить про дію магнітного поля на рухомі електрони.

Дія сили Лоренца застосовуеться в багатьох приладах і технічних установках. Так, зміщення електронного променя, що *малюе» зображення на екрані вакуумного кінескопа телевізора чи дисплея комп'ютера, здійснюється магнітним полем спеціальних котушок, у яких проходить електричний струм, що змінюеться за певним законом.

У наукових дослідженнях використовують так звані циклічні прискорювачі заряджених частинок, у яких магнітне поле потужних електромагнітів утримує заряджені частинки на колових орбітах.

Велику перспективу для розвитку електроенергетики відкривають магнітогідродинамічні генератори (МГД-генератори) (мал. 2.17). Потік високотемпературного газу, який утворюється при згорянні палива і має велику концентрацію йонів обох знаків, пропускається через магнітне поле.

Унаслідок дії сили Лоренца йони відхиляються від попереднього напряму руху й осідають на спеціальних електродах. При цьому різницю потенціалів можна використати для створення електричного струму. Такі установки можуть у майбутньому суттєво підвищити ККД теплових електростанцій за рахунок вироблення додаткової електроенергії при проходженні газів, які мають досить високу температуру і рівень йонізації, через МГД-генератори.

Задача. Електрон влітае в однорідне магнітне поле з індукцією 10^{-4} Тл перпендикулярно до ліній магнітної індукції. Його швидкість $1,6 \cdot 10^{6} \mathrm{~m} / \mathrm{c}$. Знайти радіус кола, яким рухається електрон.

Мал. 2.17. Схема, що пояснює giю МГД-генератора

Дано:
$B=10^{-4} \mathrm{~T}$ л, $v=1,6 \cdot 10^{-6} \mathrm{~m} / \mathrm{c}$, $e=1,6 \cdot 10^{-19}$ Кл, $\alpha=90^{\circ}$.
R - ?
Розв'язання

Сила Лоренца в даному випадку діє під прямим кутом до швидкості руху електрона, не змінюючи модуля його швидкості. Тому вона надає електрону лише доцентрового прискорення. Отже, можна записати

$$
e v B=\frac{m v^{2}}{R} .
$$

Звідси

$$
R=\frac{m v}{e B} .
$$

Підставимо значення величин

$$
R=\frac{9,1 \cdot 10^{-31} \mathrm{~K} \mathrm{\Gamma} \cdot 1,6 \cdot 10^{-6} \mathrm{~m} / \mathrm{c}}{1,6 \cdot 10^{-19} \mathrm{~K} \pi \cdot 10^{-4} \mathrm{~T} \pi}=9,1 \cdot 10^{-2} \mathrm{~m} .
$$

Відповідь: електрон рухатиметься коловою орбітою, радіус якої $9,1 \cdot 10^{-2} \mathrm{~m}$.

1. Який фізичний зміст сили Лоренца?
2. Який зв'язок між силою Ампера і силою Лоренца?
3. Як одержати формулу для розрахунку магнітної складової сили Лоренца?
4. Як застосовувати правило лівої руки для визначення напряму сили Лоренца, що діє на різнойменно заряджені частинки?
5. Як рухається заряджена частинка в магнітному полі, якщо: a) $\alpha=90^{\circ}$; 6) $\alpha=0$; в) $0<\alpha<90^{\circ}$?

Вправа 15

1. у магнітне поле зі швидкістю $10^{3} \mathrm{~m} / \mathrm{c}$ влітає позитивно заряджена частинка. Визначити силу Лоренца, якщо заряд частинки $2 e$, а магнітна індукція поля 0,2 Тл.
2. 3 якою швидкістю влітає в магнітне поле протон, якщо на нього діє сила Лоренца $2 \cdot 10^{-12} \mathrm{H}$? Магнітна індукція поля дорівнюе 0,4 Тл.
3. Порошинка, заряд якої 1 мкКл, а маса $1 \mathrm{mг}$, влітае в однорідне магнітне поле і рухається по колу. Визначити період обертання порошинки, якщо модуль магнітної індукції дорівнює 1 Тл.

4*. Кулька, маса якої 0,5 г, а заряд 2 мкКл, рухається в однорідному магнітному полі перпендикул̦лярно до ліній ін-

дукції зі щвидкістю $10 \mathrm{~m} / \mathrm{c}$ на сталій відстані від поверхні Землі. Знайти модуль вектора магнітної індукції.

5*. Заряджена частинка з дуже малою масою рухається зі швидкістю $25 \mathrm{~m} /$ с в однорідних електричному і магнітному полях, лінії яких взаемно перпендикулярні. Знайти відношення модуля вектора магнітної індукції до модуля вектора напруженості електричного поля, якщо вектор швидкості перпендикулярний до цих векторів.

6*. Електрон рухається в магнітному полі, індукція якого 2 мТл, радіус гвинтової лінії дорівнює $2 \mathrm{cм}$, а крок гвинта 5 cm . Знайти швидкість електрона.

§ 30. Магнітні властивості речовини

Численні досліди показують, що магнітне поле взаємодіє зі всіма без винятку речовинами, змінюючи не тільки їхнє положення в просторі, а й багато їхніх фізичних і навіть хімічних властивостей. Прояви цієї взаємодіі бувають різними. Візьмемо потужний електромагніт з конічними полюсними наконечниками, розмістимо між ними маленьку вісмутову кульку, зрівноважену на невеликих терезах (мал. 2.18). Якщо замкнути коло живлення електромагніта, рівновага терезів порушиться: кулька виштовхнеться з магнітного поля.

Розмістимо запалену свічку так, щоб ї полум'я було між полюсами електромагніта. Замкнувши коло живлення електромагніта, побачимо, що полум'я виштовхується з магнітного поля (мал. 2.19). Подібні явища спостерігав ще в XIX ст. M. Фарадей, який назвав їх діамагнітними, а речовини, з якими відбуваються ці явища, - діамагнетиками. Ретельні дослідження показують, що внаслідок взаємодії речовини і магнітного поля магнітна індукція в діамагнітних речовинах менша, ніж магнітна індукція зовнішнього магнітного

Мал. 2.18. Вісмутова кулька виштовхуеться в ділянку поля з меншою магнітною індукцією

Мал. 2.19. Полум'я свічки виштовхуеться з магнітного ПОЛя

$$
\boldsymbol{B}_{\mathrm{a}}<\boldsymbol{B}_{0} .
$$

поля: $B_{\pi}<B_{0}$. Такий ефект пояснюеться змінами в русі електронів, які відбуваються в атомах при внесенні речовини в магнітне поле, тому діамагнітний ефект властивий усім без винятку речовинам.

Речовини, у яких спостерігається діамагнітний ефект, називають діамагнетиками.

Вплив речовини на магнітне поле описуе фізична величина, яка називаеться - магнітною проникністю. Вона дорівнюе відношенню магнітної індукції поля в речовині B до магнітної індукції *зовнішнього* поля B_{0} :

$$
\mu=\frac{B}{B_{0}} .
$$

Магнітна проникність μ е безрозмірною величиною. Для діамагнетиків магнітна проникність дещо менша від одиниці.

Якщо над полюсними наконечниками закріпити на плечі терезів алюмінієву кульку, то при замиканні кола живлення вона втягуватиметься в простір, де значення магнітної індукції більше (мал. 2.20).

Такі явища називають парамагнітними, а самі речовини парамагнетиками.

Взаємодія речовини і магнітного поля проявляється як діамагнетизм, парамагнетизм і феромагнетизм.

Для парамагнетиків $B_{\mathrm{n}}>B_{0}$. Парамагнетизм проявляється в речовинах, атоми яких, маючи власне магнітне поле, ніби магнітні стрілочки поверта-

Мал. 2.20. Алюмініева кулька втягуеться в магнітне поле ються під дією зовнішнього магнітного поля, збільшуючи його магнітну індукцію.

Вільшість речовин належать до класу діамагнетиків або парамагнетиків. Аналізуючи значення магнітної проникності, можна помітити, що воно, як у парамагнетиків, так і в діамагнетиків, мало відрізняється від одиниці. Тому діамагнетизм і парамагнетизм у більшості випадків суттєво не впливає на магнітні властивості середовища. www.testosvit.com

Разом з тим існують речовини, які сильно взаемодіють з магнітним полем. Їх назвали феромагнетиками. 3 чистих речовин чітко виражені феромагнітні властивості мають лише залізо, нікель, кобальт. Проте існуе дуже багато штучних феромагнетиків, виготовлених як сплави, інколи навіть неферомагнітних речовин. Серед них особливе місце займають ферити.

Характерною ознакою феромагнетиків $е$ їх значна магнітна проникність. Так, чисте залізо, тривалий час відпалене у водні, має магнітну проникність до 340000 . Це означае, що феромагнетики підсилюють магнітне поле у 340000 разів.

Висока магнітна проникність феромагнетиків пояснюеться особливостями їхньої кристалічної будови. Маючи певні особливості в забудові електронних орбіт, атоми феромагнетика об'єднуються так, що вся речовина поділяеться на домени.

Домени - це області феромагнетика, в яких атоми розміщені впорядковано. Така область нагадуе маленький постійний магніт. Він має власне магнітне поле як результат накладання магнітних полів усіх атомів, що входять у домен, і взаємодіє із «зовнішнім* магнітним полем.

Магнітні поля доменів у ненамагніченому феромагнетику розміщені так, що компенсують одне одного. Якщо феромагнетик внести в магнітне поле, то відбудеться перебудова доменів. При цьому зміщуються межі доменів і стрибкоподібно змінюється напрям магнітної індукції їхніх полів. Одні домени зменшуються, а інші - збільшуються. Зменшуються домени, магнітна індукція полів яких утворює тупий кут з магнітною індукцією зовнішнього поля, а збільшуються ті, у яких цей кут гострий або дорівнює нулю. При певному значенні магнітної індукції зовнішнього поля настае так зване насичення: усі домени зливаються в один великий домен, магнітна індукція якого збігається за напрямом магнітної індукдії ззовнішнього поля. Таким чином, відбувається значне підсилення магнітного поля.

1. Чому можна стверджувати, що всі речовини «магнітніз?
2. Чи однаково взаємодіють речовини з магнітним полем?
3. Які речовини називають діамагнітними?
4. Як змінюють магнітне поле діамагнетики?
5. Що описує магнітна проникність?
6. Які речовини називають парамагнітними?
7. Як змінюють магнітне поле парамагнетики?
8. Як за магнітною проникністю визначити, до якого класу належить дана речовина за своїми магнітними властивостями?
9. Які речовини належать до феромагнетиків?
10.Яка основна ознака феромагнетика?

§ 31. Властивості феромагнетиків

Багато властивостей феромагнетиків є похідними від їхньої кристалічної будови. При внесенні феромагнетиків у магнітне поле фізичні зміни в них відбуваються на рівні кристалічної гратки. Тому вони мають специфічні магнітні властивості і складають окремий клас.

Найтиповішою властивістю феромагнетиків є нелінійний характер процесу намагнічення. Якщо феромагнетик внести в магнітне поле і поступово збільшувати магнітну індукцію цього поля, то магнітна індукція у феромагнетику не буде пропорційною зовнішній. Це добре видно на графіку (мал. 2.21). При поступовому збільшенні магнітної індукції зовнішнього поля магнітна індукція у феромагнетику спочатку зростає повільно, потім - швидше, а потім знову зростання уповільнюеться. При досягненні так званого насичення (точка A) магнітна індукція в феромагнетику зростає лінійно.

З такого складного характеру намагнічення можна зробити висновок, що магнітна проникність не є сталою величиною.

Для феромагнетиків характерна властивість, яку називають гістерезисом. Суть його полягає в тому, що процеси намагнічення i розмагнічення проходять неоднаково. Феромагнетик, який перебував у магнітному полі, зберігає певне намагнічення навіть у разі його відсутності. При перемагніченні феромагнетика в магнітному полі змінного струму графік залежності магнітної індукції у ньому від індукції зовнішнього поля набуває складної форми (мал. 2.22). Тому цей графік назвали петлею гістерезису.

Форма петлі для різних феромагнетиків буває різною. Для деяких сортів сталі її висота набагато більша за ширину. Ці феромагнетики називають м'якими. Вони легко намагнічуються і розмагнічуються, тому застосовуються в електротехнічних пристроях, які працюють у колах змінного струму,

Мал. 2.21. Графік процесу намагнічення феромагнетика

Мал. 2.22. Петля гістерезису

зокрема в трансформаторах. Якщо ширина петлі гістерезису співрозмірна з її висотою, то феромагнетик називають жорстким. Із таких феромагнетиків виготовляють постійні магніти і пристрої для запису інформації.

Кристалічна структура феромагнетика, як і будъ-якого кристала, залежить від температури. Тому при зміні температури феромагнетика змінюються і його магнітні властивості.

На підтвердження цього піднесемо до постійного магніту нікелеве кільце. Воно притягнеться до магніту й утримуватиметься в цьому положенні тривалий час (мал. 2.33). Якщо до кільця піднести запалений пальник, то через певний час кільце відпаде, що свідчить про втрату феромагнітних властивостей. Температуру, за якої зникають фе-

Мал. 2.23. Магнітні властивості феромагнетиків - залежать вig температури ромагнітні властивості, називають температурою або точкою Кюрі. Значення точки Кюрі для різних феромагнетиків різні.

Кристалічна структура феромагнетика, як і будь-якого кристала, залежить від температури. Тому при зміні температури феромагнетика змінюються і його магнітні властивості.

Таблиця

Речовина	Точка Кюрі, ${ }^{\circ} \mathbf{C}$
Залізо	$\mathbf{7 6 8}$
Нікель	358
Кобальт	1120
Гадоліній	17

1. Чому феромагнетики мають особливі властивості?
2. Як проходить процес намагнічення феромагнетика?
3. Чи стале значення магнітної проникності феромагнетика?
4. Що відбувається з феромагнетиком за температури Kıрі?
5. У чому проявляється гістерезис феромагнетика?

§ 32. Використання магнітнuх властивостей речовини

Під час взаємодії з магнітним полем змінюються не лише магнітні властивості речовин, а й інші їхні властивості.

Одним із цікавих прикладів використання дії магнітного поля на речовину є «омагнічення» води. Під дією магнітного www.testosvit.com

Мал. 2.24. Електромагнітний кран

поля вона набувае нових властивостей. Така вода не утворюе накипу в парових котлах, що дає змогу використовувати їі без додаткової хiмічної обробки. Ветон, замішаний на *омагніченій* воді, міцніший, ніж на звичайній воді.

Явище підсилення магнітного поля феромагнетиками використовується в різних електротехнічних приладах: електромагнітних кранах, реле, електродвигунах, трансформаторах. Для цього використовуються спеціальні сорти електротехнічної сталі (мал. 2.24).

Важко уявити сучасну радіоелектроніку без елементів із штучних феромагнетиків - феритів. Виготовляють їх з матеріалів, які мають великий питомий опір, що важливо для виготовлення високочастотної техніки. 3 них виготовляють осердя котушок коливальних контурів, магнітних антен і трансформаторів. Широкого поширення набули феритові постійні магніти.

Усі результати взаємодії магнітного поля і речовини знайшли застосування в практиці.

При взаємодіІ 3 магнітним полем змінююються не тільки магнітні властивості речовин, а й інші - механічні, теплові, електричні, оптичні і навіть хімічні. Усі ці явища використовуються людиною.

Мал. 2.25. Магнітне поле затримує частинки космічних променів

Магнітне поле лікуе злоякісні пухлини, дає змогу досліджувати внутрішні органи людини, дозволяє проникнути в таємницю багатьох хвороб людини.

З магнітним полем пов'язане життя всіх живих організмів на Землі. Вчені з'ясували, що перелітні птахи оріентуються в польоті і в пошуку своїх традиційних місць гніздування за магнітним полем Землі.

До Землі з космосу надходить потужний потік швидких заряджених частинок, які у випадку попадання на живий організм можуть негативно вплинути на нього. Проте в магнітному полі Землі на них діє сила Лоренца, яка захищає поверхню Землі від їх згубної сили (мал. 2.25).

1. Які властивості феромагнетиків використовують в електромагнітах?
2. Для чого "омагнічують» воду?

§ 33. Електромагнітна інgукція

Найбільша заслуга у вивченні явища електромагнітної індукції належить відомому англійському фізику М. Фарадею - неперевершеному майстру проведення фізичного експерименту.

Фарадей Майкл (1791-1867) - видатний англійський фізик, основоположник учення про електромагнітне поле, один із засновників електрохімї, дослідник взаємодії речовини і магнітного поля.

Відкриття у 1820 р. данським фізиком X. Ерстедом зв'язку магнітного поля з електричним струмом спонукало багатьох учених розширити дослідження явищ, пов'язаних з магнітним полем. Маючи широту мислення, визначний фізик і дослідник М. Фарадей передбачив можливий зворотний зв'язок магнітного поля і електричного струму, коли поява магнітного поля спричинює виникнення електричного струму. Після тривалих наукових пошуків він у 1831 p . отримав перші позитивні результати: домігся того, що в замкнутих провідниках, які знаходилися в змінному магнітному полі, виникав електричний струм. Явище отримало назву електромагнітної індукцїі, а струм, який виникає у провідниках, назвали $i{ }^{\boldsymbol{\mu}}$ дукційним струмом.

> Явище виникнення електричного струму в замкнутому провіднику, який знаходиться в змінному магнітному полі, називається електромагнітною індукцією.

Опишемо найважливіші досліди М. Фарадея, які можна виконати на шкільному лабораторному обладнанні.

Мал. 2.26. Досліg, коли рухаеться магніт

Мал. 227. Досліg, коли рухаеться провіяник

До клем гальванометра приєднаємо довгий провідник, частина якого закріплена в лапках штативів. Постійний підковоподібний магніт спочатку наближатимемо до провідника, а потім віддалятимемо від нього (мал. 2.26). Побачимо, що стрілка гальванометра при цьому відхилятиметься спочатку в один бік, а потім - у протилежний.

Змінимо умови досліду. Закріпимо тепер підковоподібний магніт у лапках штатива, а провідник, приєднаний до клем гальванометра, вводитимемо в міжполюсний простір і виводитимемо з нього (мал. 2.27). Стрілка гальванометра також відхилятиметься спочатку в один, а потім - у протилежний бік.

Зробимо інший дослід. Одну з котушок приеднаємо до клем гальванометра, а другу ввімкнемо в електричне коло з джерелом постійного струму і вимикачем. Замкнувши коло живлення другої котушки, почнемо наближати їі до першої (мал. 2.28). Відхилення стрілки гальванометра засвідчує, що в колі першої котушки з'явився електричний струм. Напрям цього струму зміниться на протилежний, якщо другу котуш-

Мал. 2.28. Досліg, коли рухаеться котушкд зі струмом www.testosvit.com

Мал. 2.29. Замикання і розмикання електричного кола котушки

ку віддаляти від першої. Якщо котушки нерухомі, то стрілка гальванометра не рухатиметься.

Розмістимо тепер другу котушку поблизу першої нерухомо і замкнемо коло її живлення (мал. 2.29). У момент замикання кола стрілка гальванометра відхилиться на деякий кут, а потім повернеться в початкове положення. Під час розмикання електричного кола другої котушки побачимо, що стрілка гальванометра відхилиться в протилежний бік і знову повернеться в початкове положення.

Дещо змінимо умови проведення останнього досліду. Увімкнемо в коло живлення другої котушки реостат, замкнемо коло і дочекаємося коли стрілка гальванометра повернеться в початкове положення. Після цього почнемо змінювати силу струму в колі за допомогою повзунка реостата (мал. 2.30). Ми спостерігатимемо, що зі збільшенням сили струму стрілка гальванометра відхиляється в один бік, а зі зменшенням - у протилежний.

Після цього, не змінюючи положення котушок (див. мал. 2.29), замкнемо коло живлення другої котушки і зачекаемо, доки стрілка гальванометра повернеться в початкове положення. Уведемо в обидві котушки стальне осердя (мал. 2.31). Стрілка гальванометра, як і в попередніх дослідах, відхилиться від нульової поділки і покаже наявність електричного струму в першій котушці в момент введення стрижня. Під час

Мал. 230. Досліg, коли змінюеться сила струму в котушці

Мал. 231. Досліg, коли рухається стальний стрижень
виймання стрижня 3 котушок помітимо, що стрілка гальванометра відхилятиметься в протилежний бік.

Електричний струм, який виникає в замкнутому провіднику в змінному магнітному полі, називають індукційним.

Усі ці досліди засвідчують, що за будь-якої зміни магнітної індукції чи руху замкнутого провідника в магнітному полі виникає електричний струм. Його напрям залежить від характеру зміни магнітного поля: зі збільшенням магнітної індукції він має один напрям, зі зменшенням - протилежний.

На практиці напрям струму, який виникае в замкнутому колі внаслідок електромагнітної індукції, визначають за правилом правої руки (мал. 2.32): якщо праву руку розмістити в полі так, щоб лінї̈ магнітної індукцї входили в долоню, відставлений великий палець відповідав би напряму руху провідника, то витягнуті пальці руки вказуватимуть напрям індукційного струму в провіднику.

Для тривалого існування електричного струму в колі потрібно, щоб різниця потенціалів не зникала. А це можливо за умови безперервного руху провідника, завдяки чому відбувається постійне розділення позитивно й негативно заряджених частинок під дією сили Лоренца, яка має неелектростатичне походження. Унаслідок цього процесу створюеться ЕРС індукціі.

Мал. 2.32. Правило правої руки

Спосіб розрахунку ЕРС індукції визначимо для випадку, коли прямий провідник, що є частиною замкнутого електричного кола, рівномірно рухається в однорідному магнітному полі.

Оскільки електричне коло замкнуте, то в ньому існуе електричний струм, а на провідник у магнітному полі діє сила Ампера (мал. 2.33):

$$
F_{\mathrm{A}}=B I l \sin \alpha,
$$

де B - модуль вектора магнітної ін-

Мал. 233. До пояснення EPC іняукції дукції; I - сила струму в провідни-
ку; l - довжина провідника; α - кут між напрямом струму в провіднику і вектором магнітної індукціі.

Струм у провіднику має такий напрям, що сила Ампера, яка діятиме на провідник, «гальмуватиме* рух провідника зі струмом. Щоб провідник рухався рівномірно (умова існування постійного електричного струму), до нього потрібно прикласти силу, що за модулем дорівнює силі Ампера, але протилежна їй за напрямом:

$$
F=F_{\mathbf{A}^{\prime}}
$$

Якщо за певний інтервал часу Δt провідник здійснить переміщення Δs, то робота дорівнюватиме

$$
A=F \Delta s, \text { або } A=F_{\mathrm{A}} \Delta s .
$$

Отже,

$$
A=B I l \Delta s \sin \alpha .
$$

Узявши до уваги, що за означенням сила струму дорівнюе $I=\frac{Q}{\Delta t}$, а ЕРС дорівнюе $\mathscr{E}=\frac{\boldsymbol{A}}{\boldsymbol{Q}}$, та зробивши певні математичні перетворення, одержимо:

$$
\begin{gathered}
A=B Q l v \sin \alpha . \\
\mathscr{E}=\frac{A}{Q}=\frac{B Q l v \sin \alpha}{Q}=B l v \sin \alpha .
\end{gathered}
$$

Отже, для випадку, коли провідник рівномірно рухаеться в однорідному магнітному полі, значення EPC індукції залежить від магнітної індукції поля, довжини прямого

провідника та швидкості його руху в магнітному полі, враховуючи кут між векторами \vec{B} i \vec{v}.

1. Хто з учених провів ефективні досліди з електромагнітної індукLili?
2. Якого висновку можна дійти з аналізу описаних дослідів?
3. Яке з описаних явищ є проявом електромагнітної індукції?
4. Який струм називають індукційним?
5. Що характеризує EPC індукціі?
6. Яка сила розділяє заряджені частинки в провіднику під час його руху в магнітному полі?
7. Від чого залежить значення EPC індукції?

Вправа 16

1. Визначити напрям індукційного струму в провідниках, зображених на малюнку 2.34 .
2. Визначити EPC індукції в провіднику з довжиною активної частини $0,25 \mathrm{~m}$, який переміщується в однорідному магнітному полі індукцією 8 мТл зі швидкістю $5 \mathrm{~m} / \mathrm{c}$ під кутом 30° до вектора магнітної індукції.
3. Дві паралельні мідні шини, розміщені вертикально на відстані 1 м одна від одної, замкнуті вгорі резистором з опором 1 Ом і знаходяться в магнітному полі з індукцією 0,1 Тл, перпендикулярною до площини шин. Уздовж шин, торкаючись до них, починає падати провідник масою $0,1 \mathrm{kr}$. Нехтуючи опором шин і провідника, тертям провідника об рейки, визначити максимальну швидкість руху провідника.
4. Горизонтальними рейками, розміщеними у вертикальному магнітному полі з індукцією $10^{-5} \mathrm{~T}$, рухається провідник завдовжки 1 м зі сталою швидкістю $10 \mathrm{~m} / \mathrm{c}$. Кінці рейок замк-

Мал. 234. До задачі 1 ,

нуті нерухомим провідником з опором 2 Ом. Яка кількість теплоти виділиться в цьому провіднику за 1 c ? Опором рейок і рухомого провідника знехтувати.

§ 34. Правило Ленца

Дослідження відомого російського фізика X.E. Ленца дали змогу встановити універсальне правило для визначення напряму індукційного електричного струму на основі зовнішніх проявів цього явища. 3 цією метою Е.Х. Ленц дослідив взаємодію замкнутого провідника і змінного магнітного поля, яке викликало струм у провіднику.

Щоб краще зрозуміти суть цього правила, розглянемо дослід.

На легкому горизонтальному

Мал. 235. Прилаg gля демонстрації правила Ленца важелі, що має вертикальну вісь обертання, знаходяться два легких кільця, одне з яких суцільне, а друге - розрізане (мал. 2.35). Важіль насаджений на тонке стальне вістря так, щоб тертя було мінімальним.

Уведемо в суцільне кільце тонку котушку з феромагнітним осердям (електромагніт), увімкнену в електричне коло із джерела струму і вимикача (мал. 2.36). Якщо замкнути коло живлення електромагніта, то кільце, відштовхуючись від котушки, зміститься на певну відстань і поверне важіль на деякий кут.

Мал. 236. До правила Ленца

У момент появи струму в електромагніті замкнуте електропровідне кільце, яке знаходиться біля полюса електромагніта, завжди відштовхується від нього.

Якщо дослід повторити, змінивши напрям струму в котушці, то спостерігатимемо такий самий ефект. Отже, визначальним у даному випадку е не напрям струму в котушці і, відповідно, ліній індукції магнітного поля, а зростання індукції магнітного поля.

Якщо дослід повторити з розрізаним кільцем, то подібного ефекту не спостерігатиметься. Це засвідчує, що відштовхування кільця пов'язане з індукційним струмом, який проходить в суцільному кільці.

При розмиканні кола живлення електромагніта провідне кільце буде притягуватися до нього.

Щоб зрозуміти подальший хід міркувань, пригадайте, що паралельні провідники, в яких проходить струм в одному напрямі, притягуються, а в протилежних - відштовхуються. Отже, якщо кільце відштовхується від котушки, то в ньому індукується струм, напрям якого протилежний до напряму струму в котушці (мал. 2.37). Протилежними будуть і напрями індукції магнітних полів цих струмів.

Узагальнивши результати проведених дослідів, можна зробити висновок, до якого вперше прийшов Х.Е. Ленц (правило Ленца):

магнітне поле індукційного струму завжди протидіє зміні зовнішнього магнітного поля.

Індукційний струм в замкнутому провіднику має такий напрям, що його магнітне поле компенсує зміну магнітного потоку, яка викликала цей струм.

Мал. 237. Магнітна інgукція збільшується

1. Чому суцільне металеве кільце відштовхується від електромагніта в момент замикання кола живлення?
2. Чому суцільне металеве кільце притягується до електромагніта при розмиканні кола живлення?
3. Сформулюйте правило Ленца.

Вправа 17

1. Чому коливання стрілки компаса затухають швидше, якщо корпус приладу латунний, і повільніше, якщо корпус приладу пластмасовий?
2. Що відбувається з діелектричним кільцем при введенні в нього постійного магніту?
3. Прямий постійний магніт вільно падае крізь замкнуте металеве кільце. З яким прискоренням він рухатиметься в кільці?
4. Якщо водій трамвая на повному ходу вимкне напругу на вхідних клемах двигуна і закоротить їх, то вагон дуже швидко зупиниться. Чим це можна пояснити?
5. У кільце з надпровідника вносять постійний магніт. Чому дорівнює магнітний потік крізь кільце в момент внесення?
6. Надпровідне кільце "висить" поблизу північного полюса постійного магніту. Який напрям електричного струму в кільці?

§ 35. Marнithuŭ потік

Електромагнітну індукцію можна спостерігати в двох випадках: коли провідник рухається в однорідному магнітному полі або коли нерухомий провідник знаходиться в магнітному полі, індукція якого змінюеться з часом. На практиці частіше трапляється так, що одночасно змінюються і положення провідника, й індукція магнітного поля. Прикладом може бути рух провідника в неоднорідному магнітному полі. Оскільки в такому випадку розрахунки складніші, для їх спрощення ввели фізичну величину, яка одночасно залежить і від індукції магнітного поля, і від параметрів руху провідника. Ця величина дістала назву магнітного потоку.

Уявімо провідник у вигляді замкнутого кільця, що знаходиться в однорідному магнітному полі (мал. $2.38-\mathrm{a}$). Приведемо кільце в рух у площині, перпендикулярній до ліній індукції магнітного поля. При цьому кількість ліній індукції магнітного поля, які проходять через нього, зменшуватиметься, i в кільці виникатиме індукційний струм (мал. 2.38-б).

Мал. 2.38. Рух кільця в магнітному полі
Якщо тепер кільце провідника розмістити у магнітному полі, індукція якого змінюється, то кількість ліній індукції магнітного поля через контур також буде змінюватися і в провіднику виникатиме електричний струм (мал. 2.39).

Мал. 2.39. Зміна магнітного потоку через кільце
Обидва описаних досліди можна пояснити простіше, якщо для кожного з них враховувати добуток площі кільця на значення індукції магнітного поля. В обох випадках цей добуток змінювався. Фактично він характеризує потік ліній магнітної індукції, що пронизують контур певної площі, або просто магнітний потік Φ.

Мал. 2.40. До означення магнітного потоку

Магнітний потік залежить не лише від модуля магнітної індукції поля та площі контуру, а й від кута, який утворюють нормаль (перпендикуляр) до площини витка і вектор індукції магнітного поля (мал. 2.40). Тому значення магнітного потоку в загальному випадку записуеться як

$$
\Phi=B S \cos \alpha,
$$

де Φ - магнітний потік; B - модуль магнітної індукції поля; α - кут між нормаллю до площини контуру і індукцією магнітного поля.

Величина, що дорівнює добутку магнітної індукції на площу замкнутого контуру на косинус кута (між вектором індукцї та нормаллю до контуру), називається магнітним потоком або потоком магнітної індукцї.

Аналіз формули показуе, що мінімальне значення магнітного потоку ($\Phi=0$) буде, коли $\alpha=90^{\circ}$, тобто площина контуру паралельна лініям індукції магнітного поля. Якщо $\alpha=0$, то магнітний потік буде максимальним ($\Phi=B S$).

Магнітний потік є скалярною фізичною величиною. У СI магнітний потік вимірюють у веберах (Вб), на честь відомого німецького фізика В. Вебера.

Якщо індукція магнітного поля 1 Tn, а площа контуру, крізь який проходить магнітний потік, $1 \mathrm{~m}^{2}$, то магнітний потік дорівнює 1 веберу (1 Вб):

$$
1 \mathrm{BK}=1 \mathrm{~T} \cdot 1 \mathrm{~m}^{2} .
$$

Будь-які зміни індукції магнітного поля чи площі контуру спричиняють зміну магнітного потоку і викликають явище електромагнітної індукції.

> Вебер Вільгельм Едуард (1804-1891) - німецький фізик, основні праці присвячені електромагнетизму, працював також над проблемами акустики, теплоти, молекулярної фізики, земного магнетизму.

Отже, будь-яка зміна магнітного потоку зумовлює виникнення електричного струму в замкнутому провідному контуpi. 3 урахуванням закону Ома для замкнутого кола останній висновок можна записати так: будь-яка зміна магнітного потоку приводить до виникнення ЕРС індукиіі.

1. Яку фізичну величину називають магнітним потоком?
2. З якою метою введено поняття магнітного потоку?
3. Які одиниці магнітного потоку?
4. Від яких величин залежить магнітний потік?

Вправа 18

1. Який магнітний потік проходить крізь поверхню площею $40 \mathrm{~cm}^{2}$, якщо індукція магнітного поля становить 0,2 Тл?
2. Стальне осердя з площею поперечного перерізу $20 \mathrm{~cm}^{2}$ пронизуе магнітний потік $8 \cdot 10^{-4} \mathrm{~B}$. Яка індукція магнітного поля в осерді?

§ 36. Закон електромагнітноІ індукціі

Проаналізувавши результати експериментальних досліджень явища електромагнітної індукції, можна знайти загальну формулу для вираження особливостей цього явища, які відображають суть закону електромагнітної індукції: $n p u$ зміні магнітного потоку в замкнутих провідниках виникає електричний струм, спричинений виникненням ЕРС індукцї, яка пропорційна швидкості зміни магнітного потоку:

$$
\mathscr{C}_{1}-\frac{\Delta \Phi}{\Delta t}, \quad \text { або } \quad \mathscr{E}_{1}=k \frac{\Delta \Phi}{\Delta t},
$$

де \mathscr{E} - електрорушійна сила індукціі; $\frac{\Delta \Phi}{\Delta t}$ - швидкість зміни магнітного потоку; \boldsymbol{k} - коефіцієнт пропорційності.

Закон електромагнітної індукції: електрорушійна сила індукції пропорційна швидкості зміни магнітного потоку.

Для одиниць CI коефіцієнт пропорційності дорівнює одиниці ($k=1$). Узявши до уваги, що індукційний струм протидіє зміні магнітного потоку (правило Ленца), остаточно маємо:

$$
\mathscr{E}_{1}=-\frac{\Delta \Phi}{\Delta t} .
$$

Закон електромагнітної індукції інколи називають законом Фарадея. Проте він його записав у дещо іншій формі.

Нехай магнітний потік, що пронизуе замкнутий контур, змінюеться на $\Delta \Phi$. При цьому в контурі виникає EPC:

$$
\mathscr{E}_{1}=-\frac{\Delta \Phi}{\Delta t} .
$$

Оскільки за законом Ома $I=\frac{\mathscr{E}}{R+r}$, то можна записати його для випадку електромагнітної індукції у вигляді $I=-\frac{\Delta \Phi}{\Delta t: R}$, де R - опір контуру, а $r=0$.

Заряд, який проходить у контурі внаслідок явища електромагнітної індукції: $Q=I \Delta t$.

Отже, враховуючи, що заряд є величиною скалярною і знак *мінус у законі можна опустити, отримаемо:

$$
Q=\frac{\Delta \Phi}{R}, \text { або } \Delta \Phi=Q R .
$$

Задача. Магнітний потік, що пронизуе котушку, яка мае 75 витків, дорівнює $4,8 \cdot 10^{-3}$ Вб. За який час зникає цей потік, якщо в котушці виникла EPC індукції $0,74 \mathrm{~B}$?

Дано:
$\Phi_{1}=4,8 \cdot 10^{-3} \mathrm{~B}$, $\Phi_{2}=0$, $N=75$, $\boldsymbol{8}=\mathbf{0 , 7 4} \mathrm{B}$.

Розв'язання
EPC індукції виникае в котушці тому, що магнітний потік, який пронизує іі, змінюеться на величину $\Delta \Phi=\Phi_{2}-\Phi_{1}$. У кожному витку котушки при цьому виникатиме EPC індукції, яка відповідно до закону електромагнітної індукції дорівнюе $\mathscr{E}_{1}=-\frac{\Delta \Phi}{\Delta t}$.
Загальна ЕPC індукції буде в N разів більшою: $\mathscr{E}_{1}=\frac{N \Delta \Phi}{\Delta t}$. Звідси маемо: $\Delta t=\frac{N \Delta \Phi}{\mathscr{E}_{1}}$.

Підставивши значення фізичних величин, отримаемо

$$
\Delta t=\frac{75 \cdot 4,8 \cdot 10^{-3} \mathrm{~B} \sigma}{0,75 \mathrm{~B}}=0,48 \mathrm{c} .
$$

Відповідь: струм має зникнути за $\mathbf{0 , 4 8} \mathbf{c}$.

1. Як формулюється закон електромагнітної індукції?
2. Що означає знак "мінус" у математичному записі закону електромагнітної індукціі?

Вправа 19

1. Замкнутий провідник у формі кільця площею $100 \mathrm{~cm}^{2}$ знаходиться в однорідному магнітному полі з індукцією 1 Тл. Площина кільця перпендикулярна до вектора індукції магнітного поля. Яке середне значення ЕРС індукції виникае при зникненні магнітного поля протягом $0,01 \mathrm{c}$?
www.testosvit.com
2. Дротяне кільце радіусом 5 см розміщене в однорідному магнітному полі з індукцією 1 Тл так, що вектор індукції перпендикулярний до площини. Визначити середнє значення EPC індукції, якщо кільце повернули на 90° за $0,1 \mathrm{c}$.
3. Визначити швидкість зміни магнітного потоку в котушці з 2000 витків, що індукуе в ньому EPC 120 B.
4. Яке середнє значення сили струму індукції, який виникає в замкнутому мідному провіднику завдовжки 62,8 см і діаметром 0,5 мм, якщо провідник зігнуто у вигляді кільця і вміщено в однорідне магнітне поле з індукцією 0,2 Тл, яка протягом 0,05 с зменшується до нуля?
5. Алюмінієве кільце внесене в магнітне поле так, що його площина перпендикулярна до вектора індукції магнітного поля. Середній діаметр кільця 25 cm , його товщина $2 \mathrm{mм}$. Визначити швидкість зміни індукції магнітного поля, якщо при цьому виникає індукційний струм 12 A .

§ 37. Електроgинамічний мікрофон

Одним із прикладів практичного застосування явища електромагнітної індукції є електродинамічний мікрофон. За його допомогою звукові коливання перетворюють на коливання електричного струму, які підсилюються за допомогою спеціальних електронних підсилювачів.

Мікрофони перетворюють звукові коливання в електричні.

Обов'язковою частиною електродинамічного мікрофона є постійний магніт у вигляді кільця (мал. 2.41).

До одного з полюсів цього магніту приклеєно циліндричний стрижень 1 з м'якого феромагнетика (заліза). До другого - феромагнітну пластинку 2 з такого самого феромагнетика. У цен-

Мал. 241. Схема буgови електpoguнамічного мікрофона трі цієї пластинки зроблено круглий отвір, який охоплюе циліндричний стрижень. Діаметр отвору дещо більший за діаметр стрижня, внаслідок чого між стрижнем і пластиною утворюється вузька кільцева щілина 5 , в якій зосереджується практично весь магнітний потік магніту. Над стрижнем знаходиться мембрана 3, яка під дією звукових хвиль може коливатися. До нижньої частини ме́мбрани приклеєно www.testosvit.com

невелику котушку 4 з деякою кількістю витків ізольованого дроту. Котушка розміщується в кільцевій щілині між полюсами постійного магніту.

В електродинамічному мікрофоні рухома котушка перебуває в магнітному полі.

Виводи котушки гнучкими провідниками приєднані до спеціальних клем.

Якщо на мембрану мікрофона потрапляють звукові хвилі, вона починає коливатися разом із котушкою. При коливанні котушки магнітний потік, який пронизує $\overline{\mathrm{II}}$, змінюється і в ній індукується змінна EPC індукції.

У рухомій котушці, яка знаходиться в магнітному полі, виникає ЕРС індукції.

Якщо котушка ввімкнена в коло електронного підсилювача, то електричні коливання підсилюються і можуть бути або записані на магнітний чи оптичний диск, або відразу відтворені гучномовцем.

Принцип дії електродинамічного мікрофона використовують також у різних датчиках для вивчення і контролю коливальних процесів.

1. Яке фізичне явище використовується в електродинамічному мікрофоні?
2. Для чого котушку мікрофона розміщують між полюсами постійного магніту у вузькій щілині?
3. Як відбувається перетворення механічних коливань на коливання електричного струму?
4. Де застосовують електродинамічні мікрофони?
5. У яких інших приладах використовують принцип дії електродинамічного мікрофона?

Лабораторна робота p $^{p} 3$

Дослідження явища електромагнітної індукції

Мета роботи. Навчитися відтворювати явище електромагнітної індукції та з'ясувати основні його закономірності.

Обладнання. Дві котушки з довгими провідниками, постійний магніт, гальванометр зі шкалою, що має нуль посередині, джерело постійного струму (мал. 2.42).

Мал. 2.42. Прилаgu gо лабораторної роботи

Виконання роботи

1. Приеднати одну котушку до гальванометра.
2. Наближаючи до котушки і віддаляючи від неї полюс магніту, переконатися в дієздатності складеного кола.
3. Наближаючи північний полюс магніту до котушки, а потім віддаляючи його, відмітити напрям відхилення стрілки гальванометра в обох випадках.
4. Повторити дослід з південним полюсом магніту.
5. Виконати дослідження, збільшивши швидкість руху магніту.
6. Дослідження повторити з магнітом, складеним з двох магнітів однойменними полюсами.

Таблиця

Полюс	\boldsymbol{N}		\boldsymbol{S}	
Нарям руху маг- ніту	До котуш- ки	Від котуш- ки	До котуш- ки	Від котуш- ки
Напрям відхи- лення стрілки				
Повільний рух				
Швидкий рух				

7. Висновки сформулюйте як доказ справедливості формулювання закону електромагнітної індукціі.

8*. Користуючись знаннями про теорію відносності, доведіть, що результати будуть такі самі, коли котушку наближати до магніту.

Додаткове завдання. Запропонуйте хід виконання досліду, який доведе вплив феромагнітного осердя на значення EPC індукції.

§ 38. Самоіндукція

Кожен провідник, у якому існуе електричний струм, створюе «власне» магнітне поле. Це поле утворюється, коли в провіднику починає проходити електричний струм. Якщо індукція магнітного поля перед замиканням кола дорівнювала нулю ($B_{0}=0$), то через деякий час після замикання вона матиме певне значення B, відмінне від нуля. Отже, момент появи електричного струму можна вважати моментом початку зміни магнітного потоку. А будь-яка зміна магнітно-

Явище самоіндукцї̆ виявив Д. Генрі в 1832 р.

го потоку, за законом електромагнітної індукції, зумовлюе появу вихрового електричного поля, яке спричинює появу EPC в усіх замкнутих провідниках, що знаходяться в цьому полі.

Не може бути винятком i провідник, який е "джерелом* цього поля. Вихрове електричне поле створюе і в ньому самому EPC індукції $\mathscr{E}_{1}=-\frac{\Delta \Phi}{\Delta t}$, яку назвали самоіндукцією.

На підтвердження цього складемо електричне коло з джерела постійного струму, вимикача та електричної лампочки (мал. 2.43). Якщо замкнути коло, помітимо, що лампочка засвітиться практично миттево. Якщо ж у коло ввімкнути котушку із залізним осердям (мал. 2.44), то максимальна яскравість свічення нитки лампочки установлюватиметься не відразу. Це засвідчуе, що струм у колі зростає не миттево, а упродовж певного часу. Неважко помітити, що струм у колі, в якому є котушка, що має 100 витків (мал. 2.45), наростає швидше, ніж у колі, у яке ввімкнено котушку з 1000 витків, і має такий самий опір R (мал. 2.46). На проходження струму в колі істотно впливатиме також феромагнітне осердя (мал. 2.47).

Оскільки ЕРС самоіндукції протидіє ЕРС джерела струму, то можна дійти висновку, що ЕРС самоіндукції залежить від

Мал. 2.43. Лампочка засвічується віяразу після замикання ключа

Мал. 2.45. Графік струму при замиканні кола з котушкою в 100 витків

Мал. 2.44. У колі з котушкою лампочка засвічується поступово

Мал. 2.46. Графік струму при замиканні кола з котушкою 1000 витків

Мал. 2.47. Графік струму при замиканні кола з котушкою (з осерgям)

характеристик котушки чи провідника, що ввімкнені в електричне коло.

З'ясовано, що магнітний потік, який створює провідник, в якому тече струм, прямо пропорційно залежить від сили струму в ньому: $\Phi \sim I$. Увівши коефіцієнт пропорційності L, можна записати $\Phi=L \cdot I$. Цей коефіцієнт пропорційності характеризує електромагнітні властивості провідника чи котушки і називається індуктивністю. Індуктивність залежить від форми і розмірів провідника, а також магнітних властивостей середовища.

Фізичну величину, яка характеризує електромагнітні властивості котушки чи провідника, називають індуктивністю.

Якщо внаслідок зміни сили струму в провіднику на 1 А за 1 с у ньому індукується ЕРС самоіндукції 1 B, то цей провідник має індуктивність 1 Гн.

У CI індуктивність вимірюється у генрі (Гн) на честь відомого американського фізика Д. Генрі.

Одиниця 1 генрі мае значний розмір. Тому застосовують її частинні одиниці:

$$
\begin{aligned}
& 1 \mathrm{~m} \Gamma \mathrm{H}=10^{-3} \Gamma_{\mathrm{H}} ; \\
& 1 \mathrm{mK} \Gamma_{\mathrm{H}}=10^{-6} \Gamma_{\mathrm{H}} .
\end{aligned}
$$

Якщо змінюеться електричний струм у провіднику чи котушці, то це веде до зміни магнітного потоку $\Delta \Phi=L \Delta I$, яка викликає EPC самоіндукції:

$$
\mathscr{E}_{s i}=-\frac{L \Delta I}{\Delta t} .
$$

Мал. 2.48. Схема електричного кола з котушкою і лампочкою розжарювання

Явище самоіндукції спостерігається також при розмиканні електричного кола. Для підтвердження цього складемо електричне коло з джерела струму, вимикача, котушки і лампи розжарювання. Лампу розжарювання, опір якої значно менший за опір котушки, увімкнемо паралельно котушці (мал. 2.48). Якщо замкнути коло, то волосок буде розжарюватись поступово,

ніби з затримкою. Якщо тепер розімкнути коло, то лампочка гаснутиме поступово або яскраво спалахне. Це явище також є наслідком самоіндукції. У результаті зміни магнітного потоку при розмиканні кола з'являеться EPC самоіндукції, яка підтримує в котушці струм попереднього напряму.

Задача. Визначте індуктивність котушки, якщо сила струму в ній змінюється на 50 A за 1 с і при цьому виникає EPC самоіндукції $0,08 \mathrm{~B}$.

Дано:	Розв'язання
$\Delta I=50 \mathrm{~A}$,	Згідно із законом ЕРС самоіндукціі
$\Delta t=1 \mathrm{c}$,	$\mathscr{E}_{s i}=-\frac{L \Delta I}{\Delta t}$.
$\mathscr{E}_{s t}=0,08 \mathrm{~B}$.	Звідси $L=\frac{\mathscr{C}_{s i} \cdot \Delta t}{\Delta I}$.
$L-?$	$L=\frac{0,08 \mathrm{~B} \cdot 1 \mathrm{c}}{50 \mathrm{~A}}=1,6 \mathrm{~m} \mathrm{\Gamma н}$.

Biдnовiдь: індуктивність котушки 1,6 мГн.

1. Як проявляється явище самоіндукції при замиканні електричного кола?
2. У чому проявляється явище самоіндукції при розмиканні електричного кола?
3. Як впливає індуктивність кола на перебіг явища самоіндукції?
4. Від чого залежить EPC самоіндукціі?
5. У яких одиницях вимірюеться індуктивність у Cl?

Вправа 20

1. Визначити індуктивність котушки, якщо за зміни в ній струму зі швидкістю $80 \mathrm{~A} / \mathrm{c}$ EPC самоіндукції дорівнює 30 B .
2. Якою має бути швидкість зміни струму в обмотці електромагніту з індуктивністю 2 Гн, щоб середнє значення EPC самоіндукції дорівнювало 20 B ?
3. Визначити індуктивність провідника, в якому рівномірна зміна сили струму на 2 A за 0,25 с збуджує EPC самоіндукції 20 mB .
4. Яка ЕРС самоіндукції збуджуеться в обмотці електромагніта з індуктивністю 0,4 Гн при рівномірній зміні сили струму в ній на 5 А за $0,02 \mathrm{c}$?

§ 39. Енергія магнітного поля

Явище самоіндукції підтверджуе дію закону збереження і перетворення енергії в електромагнітних явищах.

Як відомо, унаслідок явища самоіндукції при замиканні електричного кола виникає EPC самоіндукції $\mathscr{E}_{\text {a }}$. За умови, що сила струму в колі не змінюється, ЕРС самоіндукції дорівнює нулю. Такий стан в електричному колі виникає тому, що за рахунок енергії джерела струму виконується робота з компенсації ЕРС самоіндукції. Це аналогічно випадку, коли для надання нерухомому тілу певної швидкості потрібно виконати певну роботу з подолання інерції.

Будь-які зміни сили струму в котушці викличуть появу EPC індукції й приведуть до виконання роботи джерелом струму для компенсації ї дії. Ця робота дорівнюе енергії магнітного поля котушки чи провідника.

Для компенсації цієї ЕРС джерело струму виконуе роботу з переміщення заряджених частинок, загальний заряд яких дорівнюе Q. Узявши до уваги, що $\left|\mathscr{F}_{s i}\right|=\frac{L \Delta I}{\Delta t}$ і те, що $A=Q \mathscr{E}$, одержимо значення виконаної роботи для явища самоіндукції:

$$
A=\frac{Q L \Delta I}{\Delta t} .
$$

EPC самоіндукції залежить від індуктивності провідника 1 швидкості зміни сили струму в ньому.

При цьому сила струму в колі змінюється від нуля до $I_{\max }$, яке дорівнюе I_{0}. За означенням $Q=I \Delta t$.

Оскільки при замиканні кола струм не має сталого значення, то для спрощення розрахунків вважатимемо, що сила струму лінійно змінюється з плином часу. Тоді значення сили струму $I=\frac{I_{\max }}{2}=\frac{I_{0}}{2}$.

Отже,

$$
A=\frac{L I_{0} \Delta t}{2} \cdot \frac{\Delta I}{\Delta t} .
$$

Зміна сили струму ΔI за інтервал часу Δt дорівнюватиме I_{0}.
Робота, виконана джерелом струму, дорівнюватиме енергіі магнітного поля котушки зі струмом:

$$
W_{\mathrm{M}}=\frac{L I_{0} \Delta t}{2} \cdot \frac{I_{0}}{\Delta t}=\frac{L I_{0}^{2}}{2}
$$

Енергія магнітного поля котушки зі струмом пропорційна індуктивності котушки I квадрату сили струму в ній.

1. Від•яких величин залежить енергія магнітного поля провідника зі струмом?
2. Які перетворення енергії відбуваються під час замикання електричного кола з індуктивністю?
3. Які перетворення енергії відбуваються під час розмикання електричного кола з індуктивністю?

Вправа 21

1. Пояснити перетворення енергії, які відбуваються в таких процесах:
a) магнітна стрілка відхиляється поблизу провідника, в якому з'являеться струм;
б) електромагніт притягує до себе залізне осердя;
в) з електромагніта, обмоткою якого проходить струм, виймають залізне осердя;
г) постійний магніт притягуе шматок заліза.
2. На котушку опором 8,2 Ом подається стала напруга 55 B . Яка енергія магнітного поля котушки, якщо ї індуктивність 25 мГн?
3. Обмотка електромагніта має опір 10 Ом, індуктивність 0,2 Гн і знаходиться під постійною напругою. За який інтервал часу в обмотці виділиться така сама кількість теплоти, як і енергія магнітного поля в осерді?

§ 40. Змінний струм

Життя сучасного суспільства не можна уявити без використання енергії електричного струму. Завдяки йому здіснюються численні технологічні процеси, працюють машини, засоби зв'язку і комунікацій, забезпечується комфортне життя людини.

Досвід використання енергії електричного струму показав, що найзручнішим в технологічному плані є використання змінного електричного струму, зокрема такого його виду, коли сила струму і напруга змінюються з часом за законами синуса або косинуса.

Мал. 249. Обертання рамки з провіgників

максимальне значення:
Найпростішим способом отримання змінних струмів є обертання рамки з провідників в однорідному магнітному полі. Нехай у початковий момент часу (мал. 2.49) рамка розташована так, що напрямок нормалі \vec{n} (перпендикуляра) до неї збігається з напрямом індукції магнітного поля \vec{B}, в якому обертається рамка. Магнітний потік, який при цьому пронизує рамку, має

$$
\Phi_{0}=B S .
$$

Рамка обертається рівномірно з кутовою швидкістю ω і кут повороту рамки у будь-який момент часу дорівнює

$$
\varphi=\omega t .
$$

Можна легко пересвідчитися, що магнітний потік, що пронизує рамку, змінюється за законом косинуса:

$$
\Phi=B S \cos \omega t=\Phi_{0} \cos \omega t .
$$

Як відомо, у разі зміни магнітного потоку в контурі виникає електрорушійна сила індукції:

$$
\mathscr{E}_{i}=-\frac{\Delta \Phi}{\Delta t}=-\frac{\Delta(B S \cos \omega t)}{\Delta t} .
$$

Оскільки індукція магнітного поля B і площа рамки S є незмінними величинами, а з математики відомо, що $\frac{\Delta(\cos \omega t)}{\Delta t}=-\sin \omega t($ при $\Delta t \rightarrow 0)$, то можна зробити висновок: за
Δt
рівномірного обертання рамки в однорідному магнітному полі в ній виникає електрорушійна сила індукцї, що змінюеться за законом синуса.

Зрозуміло, що максимальних значень \mathscr{E}_{1} досягає в ті моменти, коли $\sin \omega t= \pm 1$. Це такі положення рамки, за яких магнітний потік, що пронизує ї, максимальний (рамка перетинає лінії індукції магнітного поля перпендикулярно до них).

За природою змінний струм не відрізняється від постійного електричного струму. Це такий самий напрямлений рух електрично заряджених частинок. Так само він має теплову, хімічну і магнітну дії. Відмінність лише в тому, що він періодично змінює напрям і своє значення. Це вимушені коливання в електричному колі сили струму і напруги.

Тому він має особливі характеристики, які визначають ефективне значення сили струму, яке викликає таку саму теплову дію, що й сила постійного струму. ІІі н́азивають діючим,

або ефективним значенням сили струму, і воно пов'язане з максимальним ї значенням співвідношенням:

$$
I_{\mathrm{eq}}=\frac{I_{\max }}{\sqrt{2}} .
$$

Аналогічно визначають ефективне значення напруги, яке пов'язане з максимальним значенням такою самою залежністю:

$$
U=\frac{U_{\max }}{\sqrt{2}}
$$

Амперметри і вольтметри у колі змінного струму вимірюють саме ефективні (діючі) значення сили струму і напруги.

Змінний струм характеризують частотою. В Україні стандартною частотою змінного струму є 50 Гц. Їі враховують при конструюванні електричних приладів змінного струму: генераторів, трансформаторів, двигунів тощо.

У промислових умовах змінний струм отримують як правило за допомогою електромеханічних генераторів (мал. 2.50). Такий генератор має статор 1 у вигляді порожнистого циліндра, на внутрішній поверхні якого розміщені обмотки $з$ ізольованого дроту. Ротор 2 розміщено на валу, який з'єднаний з певним рушійним механізмом - riдравлічною, паровою чи газовою турбіною. У пазах стального корпусу ротора знаходяться обмотки, в які подається постійний струм для

Мал. 2.50. Схема буgови генератора змінного струму створення магнітного поля. Таким чином, разом з ротором обертається векттор магнітної індукції, утворюючи змінний магнітний потік, завдяки якому в обмотках статора індукуеться змінна ЕРC. У переважної більшості генераторів вона сягає 20000 вольт.

§ 41. Трансформатор. Переgача енергіІ змінного струму

Однією з важливих переваг змінного струму над постійним $є$ те, що силу струму і напругу змінного струму можна перетворювати (трансформувати) без істотних втрат потужності.

Для зменшення втрат електричної енергії в лініях електропередач напругу підвищують до десяти і сотень тисяч вольтів, www.testosvit.com

що дає змогу при однаковій потужності відповідно зменшувати силу струму у проводах. Відповідно в місцях споживання енергії напругу знижують. Усі ці перетворення легко здійснюються за допомогою трансформаторів змінного струму.

Трансформатор (мал. 2.51) як правило складається 3 двох обмоток, які мають єдине феромагнітне осердя. Одну з них приєднують до генератора (вона називається первинною), а споживачі (електродвигуни, лампи, нагрівники тощо) приєднуються до вторинної обмотки трансформатора.

Принцип дії трансформатора змінного струму (мал. 2.52) 'рунтуеться на використанні явища електромагнітної індукції. Змінний струм, що проходить у колі первинної обмотки 1 , наприклад з кількістю витків N_{1}, створює в осерді змінне магнітне поле. Воно у свою чергу індукуе у вторинній обмотці трансформатора 2 з кількістю витків N_{2} електрорушійну силу.

Оскільки обмотки трансформатора мають спільне змінне магнітне поле, то в кожному їх витку виникає електрорушійна сила, пропорційна кількості витків у них:

$$
\frac{\mathscr{C}_{1}}{\mathscr{E}_{2}}=\frac{N_{1}}{N_{2}} .
$$

Якщо коло вторинної обмотки розімкнене, а до первинної обмотки приеднане джерело змінного струму, то такий режим роботи трансформатора називають холостим ходом. У цьому разі напруга U_{2} дорівнюе електрорушійній силі \mathscr{E}_{2}. У первинній обмотці при цьому проходить незначний струм холостого ходу, і тому $U_{1} \approx \mathscr{E}_{1}$. У такому разі напругу на обох обмотках трансформатора при холостому ходу можна вважати пропорційною кількостям витків у них:

Мал. 251. Трансформатор змінного струму з gвома обмотками
www.testosvit.com

$$
\frac{U_{2}}{U_{1}}=\frac{N_{2}}{N_{1}}=k,
$$

де k - коефіцієнт трансформаціі.
Якщо $k>1$, то $U_{2}>U_{1}$ і трансформатор називають підвищувальним; якщо $k<1$, то $U_{2}<U_{1}$, нащруга U_{2} менша від U_{1} і трансформатор є знижувальним.

Коли до вторинної обмотки приеднують споживачі, вторинне коло замикається. Це так званий робочий режим роботи трансформатора. Оскільки обмотки й осердя трансформатора складають за законом електромагнітної індукції замкнуту систему, то в ній діє закон збереження і перетворення енергії. У даному випадку він відображається рівністю потужностей первинної і вторинної обмоток трансформатора (теплові втрати в осерді будуть незначними, оскільки в сучасних трансформаторах коефіцієнт корисної дії до 99,5 \%). Отже,

$$
P_{1} \approx P_{2} ; \quad I_{1} U_{1} \approx I_{2} U_{2},
$$

або

$$
\frac{I_{1}}{I_{2}} \approx \frac{U_{2}}{U_{1}} .
$$

За допомогою трансформаторів ученим вдалося розв'язати проблему передачі енергії електричного струму на значні відстані. Оскільки при цьому можуть відбуватися значні втрати енергіі, то розв'язати цю проблему можна у спосіб, якщо електроенергію передавати за високої напруги. На підтвердження цього висновку розв'яжемо таку задачу.

Задача. Електроенергію від електростанції потужністю 50 кВт передають за допомогою лінії з опором 5 Ом. Визначити втрату напруги і потужності в лінійних проводах та коефіцієнт корисної дії електромережі у разі, коли передача енергії здійснюється за напруги 1000 В і 10000 B.

Дано:	Розв'язання
$P=50000 \mathrm{Bt}$,	Втрату напруги в лінії можна визначити за
$R=5 \mathrm{Om}$,	формулою
$U_{1}=1000 \mathrm{~B}$,	$U=I R$,
$U_{2}=10000 \mathrm{~B}$.	де I - сила струму в лінії; R - опір лінії.
- ?	Втрата потужності в лінії
$P-$?	$P=I^{2} R$.
η - ?	Коефіцієнт корисної дії лінії η можна визначити як відношення корисної потужності до повної потужності:

$$
\eta=\frac{P_{\mathrm{k}}}{P_{\mathrm{n}}}
$$

Розрахуємо значення коефіцієнта корисної дії для різних значень напруги:

$$
\text { 1) } \begin{aligned}
& U_{1}=\frac{50 \cdot 10^{3} \mathrm{BT}}{1000 \mathrm{~B}} \cdot 5 \mathrm{Om}=250 \mathrm{~B} ; \\
& I_{1}=\frac{50 \cdot 10^{3} \mathrm{BT}}{1000 \mathrm{~B}}=50 \mathrm{~A} ; \\
& P_{1}=(50 \mathrm{~A})^{2} \cdot 5 \mathrm{OM}=12,5 \cdot 10^{3} \mathrm{Br} ; \\
& \eta=\frac{50 \kappa \mathrm{KT}-12,5 \mathrm{kBT}}{50 \mathrm{KBT}} \approx 0,75 .
\end{aligned}
$$

$$
\text { 2) } U_{2}=\frac{50 \cdot 10^{3} \mathrm{~B} \mathrm{~T}}{10000 \mathrm{~B}} \cdot 50 \mathrm{O}=25 \mathrm{~B} \text {; }
$$

$$
I_{2}=\frac{50 \cdot 10^{3} \mathrm{BT}}{10000 \mathrm{~B}}=5 \mathrm{~A} ;
$$

$$
P_{2}=(5 \mathrm{~A})^{2} \cdot 5 \mathrm{OM}=125 \mathrm{BT} ;
$$

$$
\eta=\frac{50 \kappa B \mathrm{~T}-0,125 \kappa \mathrm{~K} \mathrm{~T}}{50 \kappa \mathrm{~B} \mathrm{~T}} \approx 0,997 .
$$

Порівняння цих результатів дає змогу дійти таких висновків:

1) підвищення напруги в лінії у 10 разів у стільки само разів зменшує втрати напруги;
2) підвищення напруги в лінії у 10 разів значно зменшує втрати потужності.

На підставі цих висновків можна зазначити, що передавати електричну енергію доцільніше за якомога вищих напруг.

Мал. 2.53. Система переgачі електроенергії на віgстань www.testosvit.com

Цього можна досягти, використовуючи в лініях електропередачі трансформатори, які підвищували б напругу перед тим, як струм потрапляє в лінію електропередачі, і понижували б ї на вході до споживачів.

На малюнку 2.53 показано схему сучасної лінії електропередачі (ЛЕП) змінного струму.

На всіх промислових електростанціях Украӥни працюють генератори змінного електричного струму з частотою 50 Гц, які виробляють струм напругою до 20 кВ. Підвищення напруги генератора вище від цього значення пов'язане з можливістю пробивання ізоляції проводів у генераторі. Підвищення напруги поза генератором відбувається за допомогою трансформаторів, які підвищують її до $500 \ldots 750$ кВ. Перед тим як надати електроенергію споживачам, використовують знижувальні трансформатори, які перетворюють напругу відповідно до потреб промислових підприемств, транспорту, споживачів побутової сфери. До нашої кімнатної електромережі подається напруга 220 B.

1. Які функції електричного трансформатора змінного струму?
2. 3 яких основних частин складається трансформатор?
3. Які обмотки трансформаторів вважають первинними і які вторинними?
4. Що таке холостий і робочий хід трансформатора?
5. Як змінюються втрати напруги в лінії електропередачі в разі підвищення напруги в ній?
6. Як змінюються втрати потужності в лінії електропередачі в разі підвищення напруги в ній?
7. Для чого потрібнітрансформатори?

Головне в розgini 2

1. Основною властивістю магнітного поля, яка дає можливість відрізнити його від інших полів, $є$ його дія на рухомі заряджені частинки або тіла.
2. Силова дія магнітного поля характеризуеться магнітною індукцією - векторною величиною, що визначае силу, з якою магнітне поле діє на провідник зі струмом чи рухомий електричний заряд. Ïї напрям визначається за правилом правого гвинта (свердлика). У СІ магнітна індукція вимірюеться в теслах (Тл).
3. Сила, що діє на провідник зі струмом у магнітному полі, називається силою Ампера. ІЇ модуль обчислюеться за формулою

$$
F_{\mathrm{A}}=B I \Delta l \sin \alpha
$$

Вектор сили Ампера лежить у площині, перпендикулярній до площини вектора швидкості заряджених частинок і магнітної індукції. її напрям визначаеться за правилом лівої руки: якщо ліву руку розмістити так, щоб лінії магнітної індукції входили в долоню, а чотири пальці вказували напрям струму, то відставлений під кутом 90° великий палець покаже напрям сили, що діє на провідник зі струмом у магнітному полі.
4. На окрему частинку, яка має електричний заряд і рухаеться в магнітному полі, діє магнітна складова сили Лоренца.

$$
F_{\pi}=e v B \sin \alpha .
$$

5. Усі речовини взаемодіють з магнітним полем. Магнітні властивості речовин визначаються ix внутрішньою будовою. За магнітними властивостями речовини поділяють на діамагнетики, парамагнетики і феромагнетики. На відміну від діа- i парамагнетиків, феромагнетики мають значну магнітну проникність, що є наслідком їх доменної структури.
6. Магнітний потік - це фізична величина, що дорівнюе добутку індукції магнітного поля на площу контуру та косинус кута між індукцією магнітного поля і нормаллю до площини контуру:

$$
\Phi=B S \cos \alpha .
$$

Магнітний потік вимірюеться у веберах (Вб).
7. У разі зміни індукції магнітного поля в замкнутому провіднику виникае EPC індукції. EPC індукції пропорційна швидкості зміни магнітного потоку:

$$
\mathscr{E}_{i}=-\frac{\Delta \Phi}{\Delta t} .
$$

www.testosvit.com
8. ЕPC індукції у провіднику, що рухається в магнітному полі, виникає внаслідок дії сили Лоренца на вільні електрони в ньому. Напрям індукційного струму визначають за правилом правої руки і правилом Ленца: індукційний струм, який виникає в замкнутому провіднику, має такий напрям, що його магнітне поле протидіє зміні зовнішнього магнітного поля, яке його викликає.
9. У наслідок взаємодії провідника зі струмом із власним магнітним полем виникає явище самоіндукції. Фізична величина, що характеризує електромагнітні властивості провідника чи котушки, увімкнених в електричне коло, називається індуктивністю. Одиницею вимірювання індуктивності є генрі (Гн).

Індуктивність провідника залежить від його геометричних параметрів і магнітної проникності середовища, в якому він знаходиться.
10. ЕРС самоіндукції залежить від швидкості зміни сили струму в провіднику та його індуктивності:

$$
\left|\mathscr{C}_{s i}\right|=\frac{L \Delta I}{\Delta t} .
$$

11. Енергія магнітного поля провідника зі струмом пропорційна його індуктивності і квадрату сили струму в ньому:

$$
W_{\mathrm{s}}=\frac{L I_{0}^{2}}{2} .
$$

Роздін 3

Засвоївши матеріал цього розділу, ви будете знати:

- види механічних коливань і хвиль;
- вчених, які зробили вагомий внесок у становлення теорії коливань;
- види електромагнітних хвиль залежно від довжини хвилі (частоти);
- основні елементи коливального контуру і приймача радіохвиль.

Ви зможете пояснити:

причини виникнення коливань пружинного й математичного маятників; процес виникнення коливань в коливальному контурі; поширення механічних та електромагнітних хвиль; перетворення енергіі в коливальному контурі; суть методу фізичних ідеалізацій на прикладі гармонічних коливань; екологічні проблеми, які виникають при використанні радіозв'язку.

Ви будете вміти:

формулювати ознаки гармонічних коливань;
записувати рівняння гармонічних коливань i періоду коливань у коливальному контурі;
описувати основні характеристики коливального й хвильового рухів;

- описувати коливання математичного маятника, поширення пружної хвилі;
представляти пружну і електромагнітну хвилі схематично;
визначати період механічних та електромагнітних коливань;
- досліджувати залежність частоти коливань математичного маятника від довжини;
- розв'язувати задачі на знаходження частоти, періоду коливань та довжини хвилі;
- представляти отримані результати розрахунків і,досліджень у вигляді графіків іформул.

§ 42. Коливальний рух. Вільні коливання

Коливання - це будь-який процес, в якому стан тіла чи фізичної системи тіл повторюється з часом. Коливання є найбільш поширеною формою руху в природі і техніці.

Коливання - це будь-який процес, що повторюеться в часі.

Коливаються дерева внаслідок дії вітру, поршні двигуна автомобіля під дією продуктів згоряння пального. Ми можемо розмовляти завдяки коливанням голосових зв'язок гортані і чути звуки внаслідок коливань барабанних перетинок вуха. Коливальним є процес серцебиття. З коливаннями пов'язане i світло, яке породжується електромагнітними коливаннями атомів і молекул. За допомогою електромагнітних коливань, які поширюються в просторі, можна здійснювати радіозв'язок, радіолокацію, лікувати і діагностувати деякі хвороби тощо.

У наведених прикладах механічних і електромагнітних коливань, на перший погляд, мало спільного. Проте при детальному їх дослідженні була виявлена їхня спільна властивість: різні за походженням і природою коливання, описуються однаковими рівняннями, мають однакові характеристики. Усе це полегшує ïx вивчення і дослідження.

> www.testosvit.com

Коливання бувають періодичними і неперіодичними. Перші - це коливання, в яких стан системи повторюється через однакові інтервали часу. У природі такі процеси практично не відбуваються, але в теоретичних дослідженнях таке узагальнення дає можливість вести плідні дослідження.

Коливання, в яких стан системи повторюється через однакові інтервали часу, є періодичними.

Неперіодичні коливання не мають сталого періоду коливань і є процесами, в яких стан системи повторюеться через довільні i, як правило, неоднакові інтервали часу. Такими, наприклад, є коливання гілки дерева під дією вітру.

Неперіодичні коливання не мають сталого періоду.
Найпростішими коливаннями є так звані гармонічні коливання. Це - коливання, при яких зміни фізичних величин, що описують ці коливання, відбуваються за законом синуса чи косинуса. ІІх дослідження дають можливість вивчати і складніші коливання.

Коливання, при яких зміни фізичних величин, що описують ці коливання, відбуваються за законом синуса чи косинуса, називають гармонічними.

При вивченні коливальних процесів для спрощення розрахунків та вимірювань найчастіше коливання розглядають у випадку замкнутої системи. За таких умов коливання відбуваються лише

Коливання, які відбуваються в замкнутій системі без впливу зовнішніх сил, називають вільними.

внаслідок взаємодії між тілами, які входять у таку систему. Коливання, що відбуваються в замкнутій системі, називають вільними. Важок знаходиться в рівновазі, якщо всі діючі на нього сили зрівноважені.

Прикладом вільних коливань є коливання пружинного маятника.

Пружинний маятник - це важок деякої маси m, прикріплений до кінця пружини,'яка в свою чергу закріплена нерухомо (мал. 3.1).

Змістимо важок від положення рівноваги $O O^{\prime}$ на відстань $+x$. При цьому за законом Гука виникне сила пружності, яка діятиме на тіло у напрямі до положення рівноваги: $F_{\text {口р }}=-k x$.

Під дією цієї сили важок почне прискорено рухатися до положення рівноваги з прискоренням \vec{a}. Згідно з другим законом Ньютона $\vec{F}=m \vec{a}$.

У момент проходження важка через положення рівноваги його швид-

Мал. 3.2. Важок рухається ліворуч кість і кінетична енергія будуть максимальними (мал. 3.2).

Маючи певну кінетичну енергію, важок за інерцією продовжуе рух далі (ліворуч), виконуючи роботу зі стиснення пружини. Сила пружності, яка при цьому зростає, спрямована до положення рівноваги. Коли тіло знаходитиметься в крайньому лівому положенні, на нього буде діяти максимальна сила пружності, спрямована до положення рівноваги (праворуч), до якого і почне прискорено рухатися тіло.

Якщо ми будемо вважати, що сили тертя і опору не діють, то можемо зробити висновок, що такі процеси будуть повторюватися тривалий час.

Врахувавши прискорення, якого тілу надає сила пружності, рівняння руху можна записати так:

$$
m a=-k x .
$$

Звідси

$$
a=-\frac{k}{m} \cdot x
$$

У цьому рівнянні величина $\frac{k}{m}$ завжди додатна, оскільки жорсткість пружини і маса тіла не можуть бути від'ємними. Тому цю величину можна позначити окремим символом ω_{0}^{2}, а рівняння руху тіла на пружині - записати у вигляді

$$
a=-\omega_{0}^{2} x .
$$

Загальне рівняння коливань:

$$
a=-\omega_{0}^{2} x
$$

З курсу математики відомо, що розв'язком цього рівняння є періодична гармонічна функція

$$
x=A \sin (\omega t+\alpha),
$$

де A - амплітуда коливань; ($\omega t+\alpha$) - фаза; α - початкова фаза. Оскільки зміщення важка x змінюється за законом синуса, то такі коливання є гармонічними (мал. 3.3).

Мал. 33. Графік незгасаючих гармонічних коливань
Скориставшись тим, що $\omega_{0}=\frac{2 \pi}{T}$, отримаємо формулу періоду коливань пружинного маятника:

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

Відповідно інші характеристики коливального руху швидкість і прискорення - також змінюються за гармонічним законом.

Оскільки в реальних умовах у кожній системі діють сили тертя, то амплітуда коливань тіла буде поступово зменшуватися (мал. 3.4).

Мал. 3.4. Графік вільних коливань
Вільні коливання в реальних умовах завжди згасаючі, оскільки в кожній коливальній системі діють сили тертя. Тому кожна наступна амплітуда коливань буде меншою, ніж попередня. Якщо створити ідеальну систему, в якій не діють сили тертя, то коливання в ній будуть незгасаючими. Частота цих коливань називається власною частотою коливальної системи.

Частота коливань системи, в якій відсутні сили тертя, називається власною.

Задача. Визначити період коливань важка, що має масу 100 г, підвішеного до пружини, коефіцієнт пружності якої становить $10 \mathrm{H} / \mathrm{m}$.

Дано:
Розв'язання
$m=100$ г, $k=10 \mathrm{H} / \mathrm{m}$.
T - ?
Для розрахунку періоду коливань пружинного маятника використовують формулу

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

Підставивши у цю формулу значення фізичних величин, отримаємо

$$
T=2 \cdot 3,14 \cdot \sqrt{\frac{0,1 \mathrm{Kr}}{10 \mathrm{H} / \mathrm{m}}}=0,6 \mathrm{c} .
$$

Biдповiдь: період коливань цього пружинного маятника дорівнюе 0,6 с.

1. Який процес називається коливанням?
2. Яка відмінність між періодичними і неперіодичними коливаннями?
3. Які коливання називаються гармонічними?
4. Які коливання називаються вільними?
5. Чим нехтують при розгляді вільних коливань у реальних коливальних системах?
6. Що є причиною виникнення коливань пружинного маятника?
7. Як записується загальне рівняння коливань пружинного маятника?

Вправа 22

1. На малюнку 3.5 зображено ненавантажену пружину, лінійку із сантиметровими поділками, та цю саму пружину, до якої прикріплений вантаж масою 1 kr . Розрахувати період, частоту та колову частоту коливань вантажу на пружині.
2. Напишіть рівняння гармонічного коливання тіла, якщо амплітуда коливання $0,2 \mathrm{~m}$, а частота 2 Гц.
3. Коливання вантажу на пружині описуеться рівнянням

$$
x=0,1 \sin \left(\omega t+\frac{\pi}{2}\right) .
$$

Визначити:
a) амплітуду коливань; б) частоту коливань; в) колову частоту; г) період; д) початкову фазу.

Мал. 35. До заgачі 1

Мал. 3.6. До заgачі 6
4. Важок масою 100 г коливається на пружині з частотою 2 Гц. Яка жорсткість пружини?
5. Яка частота коливань тіла масою 200 г, що здійснюе коливання в горизонтальній площині на пружині жорсткістю $16 \mathrm{H} / \mathrm{m}$?
6. Яка з кульок, зображених на малюнку 3.6 , може здійснювати коливання?

§ 43. Вимушені коливання

У багатьох технологічних процесах відбуваються коливання, які повинні тривати певний час. Тому намагаються отримати незатухаючі коливання. 3 цією метою в технічних пристроях застосовують вимушені коливання. Це коливання, що відбуваються під дією зовнішньої сили, яка періодично змінюеться. Такими є, наприклад, коливання поршнів у двигуні внутрішнього згоряння внаслідок періодичної дії газу, що розширюеться під час робочого ходу поршня.

Вимушеними коливаннями є також змінний струм, який утворюється при обертанні рамки в магнітному полі.

Частота коливань в описаних вище прикладах визначаеться частотою дії вимушуючої сили.

Регулюючи подачу пального у двигун, можна змінювати частоту руху поршнів. Зміни частоти змінного струму досягають відповідною зміною швидкості обертання ротора турбіни тощо.

Окремий інтерес становить випадок, коли періодично діюча зовнішня сила діє на тіло, яке може здійснювати вільні коливання.

Якщо тіло в початковий момент було нерухомим, то після початку дії вимушуючої сили воно починає коливатися, а його амплітуда поступово зростає. Через деякий час амплітуда коливань встановлюється постійною і надалі не зростає. Щоб отримати коливання, які тривалий час не затухають, потрібно компенсувати втрати, які відбуваються в коливальній системі внаслідок дії сил тертя чи опору. Типовим прикладом такої компенсації є розгойдування звичайної гойдалки. Підштовхуючи гойдалку, людина надає їй певної енергії для покриття втрат, викликаних тертям. Якщо це робити з певною www.testosvit.com

частотою, то амплітуда коливань зростатиме. За певної частоти вона набуде свого максимального значення. Явище різкого зростання амплітуди вимушених коливань називають резонансом.

Резонанс відбувається тоді, коли частота дї̆ вимушуючої сили дорівнює власній частоті коливань системи.

Подальше зростання частоти приведе до зменшення амплітуди коливань. Отже, амплітуда вимушених коливань тіла залежить від частоти дії вимушуючої сили. Для кожної коливальної системи існуе певна частота, за якої амплітуда вимушених коливань матиме максимальне значення. Ця частота називається резонансною. На малюнку 3.7 показано графічну залежність амплітуди коливань коливальної системи від частоти дії вимушуючої сили. За різних значень сили опору в системі висота графіка буде різною: найвищий графік

Мал. 3.7. Резонансні криві для різних значень сили опору відповідає найменшому значенню сили опору.

Встановлено, що резонансна частота дорівнюе частоті власних коливань системи:

$$
f_{\text {pes }}=f_{\mathrm{n} x} .
$$

З явищем резонансу ми зустрічаемося часто і в побуті, і в техніці. Дія цього явища може бути і корисною, і шкідливою. Так, щоб виїхати з калюжі чи піску, водій періодично вмикає зчеплення, ніби розгойдуючи автомобіль. Збільшення амплітуди коливань автомобіля внаслідок резонансу сприяе його виїзду.

Здобутком історії стала катастрофа Бруклінського мосту в Нью-Йорку, який зруйнувався внаслідок резонансу.

1. Які коливання належать до розряду вимушених?
2. Чим визначається частота вимушених коливань?
3. Від чого залежить амплітуда вимушених коливань?
4. За яких умов настає резонанс?
5. Що відображають резонансні криві?
6. Які фактори визначають висоту резонансної кривої?

§ 44. Математичний маятник

Серед систем, які можуть здійснювати коливання, є нитяний маятник. Це тіло малих розмірів, підвішене на довгій нерозтяжній нитці. Розглянемо причини, які викликають коливання такого маятника. Для зручності розрахунків будемо вважати, що розміри тіла значно менші за довжину нитки, і відхилення від рівноваги повинно бути незначним. Такий маятник ще називають математичним.

Розглянемо його детальніше.
На нерухому кульку маятника будуть діяти сила тяжіння та сила натягу нитки (мал. 3.8). Ix рівнодійна дорівнюватиме нулю. Зрозуміло, що за таких умов кулька не буде рухатися.

Якщо кульку вивести з положення рівноваги, то рівнодійна \vec{F} сил пружності і тяжіння стане відмінною від нуля (мал. 3.9).

Незалежно від того, в який бік відхилятиметься кулька, рівнодійна завжди буде спрямована до положення рівноваги.

Значення рівнодійної визначимо з малюнка на основі аналізу паралелограма сил: $F=m g \operatorname{tg} \varphi$. За малого кута відхилення $\operatorname{tg} \varphi \approx \sin \varphi=\frac{x}{l}$, де l - довжина підвісу; $x-$ зміщення тіла від положення рівноваги.

Застосуемо до опису руху математичного маятника другий закон Ньютона, врахувавши, що зміщення кульки спрямоване в протилежний бік до дії рівнодійної: $m a=-m g \operatorname{tg} \varphi=-m g \frac{x}{l}$.

Мал. 3.8. Нитяний (математичний) маятник у рівновазі

Мал. 3.9. Рівноgійна сил тяжіння пружності напрямлена gо, положення рівноваги

Звідси

$$
a=-\left(\frac{g}{l}\right) \cdot x
$$

Величина $\frac{g}{l}$ завжди додатна, а тому її можна позначити ω_{0}^{2}. Тоді рівняння руху математичного маятника набуває вигляду $a=-\omega_{0}^{2} x$.

Математичний маятник здійснює гармонічні коливання за рівнянням, розв'язком якого є гармонічна функція

$$
x=A \sin (\omega t+\alpha)
$$

З курсу математики відомо, що розв'язком цього рівняння $\boldsymbol{\varepsilon}$ вираз $x=A \sin (\omega t+\alpha)$. Тому можна зробити висновок, що математичний маятник здійснюе гармонічні коливання.

Скориставшись рівнянням руху математичного маятника, можна знайти формулу для розрахунку періоду коливань математичного маятника. Для цього врахуємо, що величина, позначена як ω_{0}, е кутовою частотою і дорівнюе $\omega_{0}=2 \pi f=\frac{2 \pi}{T}$. Тут f - частота коливань, T - період коливань. 3 рівняння руху математичного маятника одержимо:

$$
\omega_{0}^{2}=\frac{g}{l} .
$$

Або підставивши значення кутової частоти: $\frac{g}{l}=\frac{4 \pi^{2}}{T^{2}}$. Звідси

$$
T=2 \pi \sqrt{\frac{l}{g}} .
$$

Отже, період коливань математичного маятника залежить від довжини підвісу і прискорення вільного падіння.

Період коливань математичного маятника залежить від довжини підвісу і прискорення вільного падіння:

$$
T=2 \pi \sqrt{\frac{l}{g}}
$$

Дано:
$l=150 \mathrm{~cm}$,
$t=300 \mathrm{c}$,
$N=122$.
g -?

Розв'язання

Зв'язок між параметрами маятника встановлюе формула для періоду коливань математичного маятника:

$$
T=2 \pi \sqrt{\frac{l}{g}} .
$$

Згідно з ціею формулою

$$
g=\frac{4 \pi^{2} l}{T^{2}}
$$

Якщо врахувати, що $T=\frac{1}{f}$, а $f=\frac{N}{t}$, то отримаемо

$$
g=\frac{4 \pi^{2} l N^{2}}{t^{2}}
$$

Підставивши значення фізичних величин, отримаємо

$$
g=\frac{4 \cdot 9,87 \cdot 1,5 \mathrm{~m} \cdot 14884}{9 \cdot 10^{4} \mathrm{c}^{2}}=9,78 \frac{\mathrm{~m}}{\mathrm{c}^{2}} .
$$

$B i \partial n o в i \partial b:$ прискорення вільного падіння в цьому випадку становить $9,78 \frac{\mathrm{M}}{\mathrm{c}^{2}}$.

1. Який маятник називається математичним?
2. Чому коливається математичний маятник?
3. Який напрям має рівнодійна сил, що діють на маятник?
4. Між якими величинами встановлює зв'язок рівняння руху математичного маятника?
5. Від чого залежить період коливань математичного маятника?
6. Як залежить період коливань математичного маятника від його довжини?
7. $Я к$ залежить період коливань математичного маятника від амплітуди коливань?
8. Як залежить період коливань математичного маятника від його маси?

Вправа 23

1. Яким буде період коливань маятника довжиною 1 м?
2. Якою повинна бути довжина маятника, щоб період його коливань дорівнював 1 c ? Яка частота цих коливань?

3*. Написати рівняння гармонічних коливань маятника з амплітудою 5 см, якщо за 1 хв відбувається 150 коливань, а

ночаткова фаза 45°. Яке положення займе маятник через $0,2 \mathrm{c}$ після початку руху?
4. На скільки піде вперед годинник з маятником, якщо його перенести з екватора на полюс Землі?
5. Маятник здійснюе 24 коливання протягом 30 c . Який період і частота коливань маятника? Якою буде його амплітуда, якщо його відхилити на 5° ?

6*. Частота вільних коливань маятника на Землі 0,5 Гц. Якою буде частота його коливань на Місяці, де прискорення вільного падіння в 6 разів менше, ніж на Землі?

7*. Два маятники відхилені від положення рівноваги і відпущені одночасно. Перший маятник довжиною 4 м здійснив за деякий інтервал часу 15 коливань. Другий - за цей самий час здійснив 10 коливань. Яка довжина другого маятника?
8. Координата тіла, що коливаеться, змінюеться за законом $x=3,5 \cos 4 \pi t$. Яка амплітуда коливань і циклічна частота? Якою буде фаза коливань через 5 с після початку коливань?

Лабораторна робота $\boldsymbol{N}^{\rho} 4$

Виготовлення маятника і визначення періоду його коливань

Mema. Дослідити залежність періоду коливань нитяного маятника від амплітуди коливань, маси та довжини підвісу (мал. 3.11).

Обладнання. Невеликі важки різної маси; штатив; лінійка з міліметровими поділками; секундомір.

Виконання роботи

1. Підвісити важок на нитці до лапки штатива.
2. Відхилити важок від положення рівноваги на невеликий кут і відпустити.
3. Виміряти час 10 ... 50 повних коливань і визначити частоту і період цих коливань.
4. Повторити дослід за пунктом 3, змінивши початкове відхилення нитки.
5. Повторити досліди за пунктами 1-4 для важків різної маси.
6. Виготовити маятник завдовжки $l_{1}=1 \mathrm{~m}$ і визначити період його коливань.
7. Повторити дослід за пунктом 6 для маятника довжиною $l_{2}=0,25 \mathrm{~m}$.

Мал. 3.10. До лабораторної роботи
8. Порівняти результати досліджень за пунктами 6 і 7, розрахувавши відношення $\frac{l_{1}}{l_{2}} \mathrm{i} \frac{T_{1}^{2}}{T_{2}^{2}}$. Зробити висновки.

Узагальнити результати свого дослідження як відповідь на запитання: від яких величин залежить період коливань нитяного маятника?

§ 45. Енергія коливального руху

У механіці розрізняють кінетичну та потенціальну енергії тіл. Кінетична енергія визначається масою тіл та швидкістю їх рyхy.

Потенціальну енергію тіла в полі сил тяжіння визначають за формулою $E_{\mathrm{u}}=m g h$, потенціальну енергію пружно деформованого тіла (наприклад, пружини) $E=\frac{k x^{2}}{2}$.

Якщо розглядати рух важка, прикріпленого до пружини (див. мал. $3.1,3.2$), то тут періодично змінюватимуться як швидкість руху тіла, так і сила пружності пружини. Отже, періодично будуть змінюватися кінетична й потенціальна енергії. Кінетична енергія матиме максимальні значення в моменти проходження тілом положень рівноваги, а потенціальна - у моменти перебування тіла в точках найбільших відхилень від положення рівноваги.

Досі ми вважали, що в коливальних системах втрат механічної енергії немає, тому повна механічна енергія системи залишалася сталою:

$$
E_{\mathrm{n}}+E_{\mathrm{k}}=\frac{k x^{2}}{2}+\frac{m v^{2}}{2}=\text { const. }
$$

У разі максимального відхилення тіла від положення рівноваги повна механічна енергія системи дорівнюватиме максимальній потенціальній енергії пружно деформованої пружини:

$$
E_{n \max }=\frac{k A^{2}}{2},
$$

де A - максимальне відхилення тіла від положення рівноваги, або амплітуда коливань.

Оскільки втратами механічної енергії у системі можна знехтувати, то

$$
\frac{k A^{2}}{2}=\frac{m v_{\max }^{2}}{2}=\text { const. }
$$

З останнього рівняння можна знайти максимальне значення швидкості руху тіла в коливальному процесі.

1. У яких точках траєкторії тіло, що коливається, має лише потенціальну енергію?
2. У які моменти руху тіло, що коливається, має лише кінетичну енергію?
3. Як визначають потенціальну енергію тіла, що коливається? Яке максимальне значення може мати ця енергія?
4. Яке максимальне значення кінетичної енергії може мати тіло, що коливається? Яке в цьому разі значення швидкості тіла?
5. Яку повну механічну енергію має тіло, що коливається, у будьякій точці траєкторіі?

§ 46. Механічні хвилі. Довжина хвилі

Коливання як процес можуть поширюватися в просторі. Для підтвердження цього підвісимо на нитці, закріпленій у штативі кілька маятників і приведемо один з них у коливальний рyх (мал. 3.11).

За деякий час усі маятники будуть коливатися. Отже, коливання можуть передаватися від одного тіла до іншого через пружні зв'язки. Подібне можна спостерігати в природі.

Якщо кинути камінь у воду озера, то побачимо, що від нього навсібіч поширяться кола, у яких частинки води коливаються у вертикальному напрямі. Поплавок, який плаватиме поруч на поверхні води і до якого надійшли коливання, також починає коливатися. У даному випадку відбувається складний процес. 3 одного боку, частинки води коливаються, зміщуючись у вертикальному напрямі, а з іншого коливання поширюються вздовж поверхні води в горизонтальному напрямі. Проте зміщення частинок води в горизонтальному напрямі не відбуваеться. Тому поплавок на хвилі хоча й коливається, але до берега не наближається. Тому кажуть, що поширюється хвиля.

Процес поширення коливань в пружному середовищі назвали механічною хвилею.

Як будь-який фізичний процес, хвиля має певні характеристики. Однією з них е швидкість хвилі. Мал. 3.11. Маятники на нитці

Усі відомі науці хвилі поширюються не миттево, а протягом певного часу, з певною швидкістю.

Який же механізм утворення хвилі?

Хвиля - процес поширення коливань.

Якщо проаналізувати розглянуті раніше приклади, то можна помітити, що механічні хвилі поширюються в пружному середовищі. Для того щоб уявити процес поширення хвиль у пружному середовищі, змоделюемо його за допомогою кульок певної маси, з'еднаних між собою пружинами (мал. $3.12-\mathrm{a}$).

Якщо надати певного імпульсу лівій крайній кульці (мал. 3.12-б), то вона почне рухатися, розтягуючи пружину. На другу кульку почне діяти сила, яка зміщуватиме їі в тому самому напрямі. Унаслідок інертності рух другої кульки не буде узгодженим з рухом першої кульки: він буде запізнюватися порівняно з рухом першої кульки (мал. 3.12 -в).

Якщо першу кульку привести в коливальний рух, то друга кулька також почне коливатися, але з деяким запізненням за фазою. Третя кулька під впливом сили пружності також почне коливатися, але ще більше відстаючи за фазою. Нарешті всі кульки почнуть коливатися з однаковою частотою, але в різних фазах. При цьому ланцюжком побіжить поперечна хвиля.

Якщо першій кульці в такій моделі надати імпульсу уздовж ланцюжка, то вздовж неї також поширюватиметься хвиля. Таку хвилю називають поздовжньою. ІЇ утворення можна спостерігати на довгій горизонтальній пружині, одним кінцем закріпленій у стіні (мал. 3.13): після удару по торцю пружини

Мал. 3.12. Модель процесу утворення пооперечної xвuлi www.testosvit.com

утворяться згустки і розрідження ії витків, які відображають поширення поздовжньої хвилі.

Якщо розглянути поширення механічної хвилі за допомогою моделі з кульок (мал. 3.12), то можна помітити, що коли перша кулька проходить положення рівноваги й

Мал. 3.13. Поширення позgовжньої хвилі рухається вгору, на певній відстані від неї існуе інша кулька, яка, проходячи положення рівноваги, також рухається вгору, тобто коливання цих кульок відбуваються в одній фазі.

Відстань між двома сусідніми точками хвилі, які коливаються в одній фазі, називають довжиною хвилі (мал. 3.14). Наприклад, це відстань між двома сусідніми гребнями хвилі, утвореної від кинутого у воду каменя. Довжина хвилі позначається буквою грецького алфавіту λ (лямбда).

За один період хвиля поширюеться на відстань, що дорівнює довжині хвилі. Тому швидкість поширення хвилі можна визначити за допомогою цих величин:

$$
v=\frac{\lambda}{T} .
$$

Звідси $\lambda=v T$.
Довжина хвилі дорівнює добутку швидкості хвилі на період

$$
\lambda=v T .
$$

Оскільки період зв'язаний з частотою співвідношенням

$$
T=\frac{1}{f}, \text { то } \lambda=\frac{v}{f}
$$

Отриманий вираз для довжини хвилі ідентичний виразу для довжини шляху за певний час:

$$
l=v t .
$$

Тому існує інше означення довжини хвилі: це відстань, на яку поширилася хвиля за один період.

Довжина хвилі є універсальною характеристикою хвильового процесу різної природи - механічних, електромагнітних хвиль, хвиль, властивих мікрочастинкам.

Мал. 3.14. Відстань між двома сусіяніми точками хвилі, які коливаються в оgній фазі

Задача. Човен хитається на хвилях, які поширюються з швидкістю $2,5 \mathrm{~m} / \mathrm{c}$. Відстань між двома найближчими гребенями хвиль 8 m . Який період коливання човна?

Дано: Розв'язання
$v=2,5 \mathrm{~m} / \mathrm{c}$, За означенням, відстань між двома найближ$l=8 \mathrm{~m} . \quad$ чими гребенями - це довжина хвилі. Тому можна записати зв'язок між швидкістю i T - ? періодом коливань у вигляді

$$
l=v T .
$$

Звідси

$$
T=\frac{l}{v} .
$$

Підставивши значення фізичних величин, отримаємо

$$
T=\frac{8 \mathrm{~m}}{2,5 \mathrm{~m} / \mathrm{c}}=3,2 \mathrm{c} .
$$

Відповідь: період коливання човна $3,2 \mathrm{c}$.

1. Що таке хвиля? Які умови ї поширення?
2. Яка хвиля називається поперечною, а яка поздовжньою?
3. Чому в механічній хвилі між коливаннями окремих частинок існує різниця фаз?
4. Від чого залежить швидкість хвилі?
5. Що таке довжина хвилі?
6. Яка залежність між довжиною хвилі і частотою?
7. Чому довжину хвилі називають універсальною характеристикою хвильового процесу?

Вправа 24

1. Уздовж пружного шнура поширюється поперечна хвиля зі швидкістю $20 \mathrm{~m} / \mathrm{c}$. Період коливання шнура $0,5 \mathrm{c}$. Чому дорівнює довжина хвилі?
2. В океанах довжина хвилі сягає 300 m , а період коливань 15 с. Яка швидкість поширення такої хвилі?
3. За 30 с морська хвиля вдаряеться об берег 15 разів. Швидкість поширення хвилі $4 \mathrm{~m} / \mathrm{c}$. Яка довжина хвилі?
4. Хвилі набігають на берег озера, і кожні 12 с перетинають берегову лінію три хвилі. Яка швидкість хвилі, якщо відстань між їх гребенями становить 6 м?

§ 47. Звукові хвилі

Звук супроводжує людину протягом усього життя. Він е основним засобом спілкування між людьми, його використовують у різних технологічних процесах. Як ви знаєте, джерелом звуку є тіло, що коливається. Коливаються ніжки камертона, здійснює коливання дифузор гучномовця, відтворюючи голос людини чи музику. Поширення цих коливань і сприймається нами як звук.

Звук є поздовжньою механічною хвилею, яка може поширюватися лише в пружному середовищі, зокрема в повітрі, воді, металах, дереві, пластмасі тощо.

Роль повітря в поширенні звуку була доведена в 1660 p. англійським фізиком P. Бойлем, який дослідив, що з-під ковпака вакуумного насоса назовні звук не поширюється, якщо з нього викачати повітря.

Досліджувати звук вчені почали здавна. Тому для його характеристики застосовують специфічні величини. Так, висота тону, про яку ведуть мову музиканти, означає частоту звукових коливань: чим більша частота, тим вищий тон. Гучність звуку пов'язана з амплітудою коливань: чим більша амплітуда, тим гучніший звук.

Звукові хвилі мають властивість відбиватися. Якщо звук потрапляе на суцільну перешкоду (стіну, гору), то він відбиваеться, і ми чуемо луну. Властивість хвиль відбиватися від перешкод використали інженери для створення приладу (його назвали ехолокатор або ехолот) для визначення глибини під дном корабля (мал. 3.15).

Випромінювач звуку посилае вузький пучок звукових хвиль до дна водойми, а спеціальний мікрофон вловлюе відбитий сигнал. Вимірюючи інтервал часу між моментами посилання \mathbf{i} приймання сигналів, спеціальна електронна апаратура визначає глибину водойми.

Людина чуе звук лише в певному діапазоні частот. Вважається, що людське вухо чутливе до коливань частотою від 20 Гц до 20 кГц. Хвилі з більшою за 20 кГц частотою називають ультразвуковими, а

Мал. 3.15. Схема, яка пояснюе giю ехолокатора

з частотою, меншою за 20 Гц, - інфразвуковими. Їх вухо людини не чує. Проте властивості цих звуків використовують в різних пристроях. Так, ультразвук застосовують для стерилізації продуктів харчування, очищення поверхні металів від бруду і окислів. У медицині існують ультразвукові апарати для дослідження внутрішньої порожнини тіла людини. Останнім часом розроблено ультразвуковий хірургічний інструмент, який дає можливість проводити певні операції без втрат крові.

Інфразвуки шкідливі для людського організму. Тому з ними доводиться боротися. Там, де виробництво пов'язане з потужними низькочастотними механічними коливаннями, застосовують засоби ізоляції робітників від шкідливої дії інфразвуків. Наприклад, простий вентилятор, який повинен був би підвищити працездатність робітника, може викликати значну його втому, оскільки інфразвук, спричинений обертанням лопатей, шкодить здоров'ю людини.

1. Як утворюеться звукова хвиля?
2. Які речовини добре проводять звук?
3. Які коливання чує вухо лодини?
4. Які хвилі називають ультразвуками і де вони застосовуються?
5. Якіх хвилі називають інфразвуками і які дії вони можуть спричинити?

§ 48. Коливальний контур. Виникнення електромагнітних коливань у коливальному контурі

Мал. 3.16. Схема коливального контуру

Крім механічних коливань, у природі існують електромагнітні коливання. Вони утворюються в системі, що називаеться коливальним контуром. Це електричне коло, що складається з котушки індуктивності і конденсатора, з'єднаних між собою паралельно (мал. 3.16).

Коливальний контур - це коло 3 паралельно з'єднаних котушки індуктивності I конденсатора.

Зазвичай опір провідників у такому колі дуже малий. Для отримання коливань в коливальному' контурі конденса-

тор спочатку заряджають, надаючи йому заряд Q_{0}. Тоді в початковий момент часу між обкладками ковденсатора виникає електричне поле. Повна енергія в контурі в цей момент дорівнюع енергії зарядженого конденсатора:

$$
W=W_{\mathrm{e}}=\frac{Q_{0}^{2}}{2 C},
$$

де Q_{0} - заряд конденсатора; C - його електроємність.
При замиканні ключа конденсатор починає розряджатися, і в контурі виникає зростаючий за значенням струм. Унаслідок розряду конденсатора енергія електричного поля зменшуеться; вона перетворюеться в енергію магнітного поля котушки, в якій проходить струм I :

$$
W_{\mathrm{m}}=\frac{L I^{2}}{2}
$$

де I - сила струму; L - індуктивність котушки.
В ідеальному коливальному контурі повна енергія зберігаеться і залишається рівною енергії електричного поля конденсатора після його заряджання. У будь-який момент часу вона дорівнюе сумі енергій електричного поля конденсатора і магнітного поля котушки:

$$
W=\frac{Q^{2}}{2 C}+\frac{L I^{2}}{2}
$$

$$
W=\frac{Q^{2}}{2 C}+\frac{L I^{2}}{2}
$$

У момент часу, коли конденсатор повністю розрядився, енергія електричного поля стає рівною нулю, а енергія магнітного поля котушки досягає максимального значення:

$$
W=W_{\max }=\frac{L I_{\max }^{2}}{2}
$$

Після цього сила струму в контурі починає зменшуватися, отже, зменшується і магнітний потік. За законом електромагнітної індукції, зміні струму протидіє EPC самоіндукції, що виникає внаслідок зміни магнітного потоку. Тому через певний час конденсатор починає перезаряджатися, і між його обкладками знову виникає електричне поле.

Згодом, через певний час струм припиниться, а заряд конденсатора набуває свого початкового значення, проте на обладках він буде протилежним за знаком. Далі відбуватимуться ті самі процеси, які були на початку циклу, але вони повторюватимуться в зворотному напрямі. Через певний інтервал часу система повернеться в попередній стан і почнеться самовільне повторення циклу заряджання і розряджання конденсатора. За відсутності втрат на нагрівання провідників у коливальному контурі коливання в ньому будуть незгасаючі.

У реальних же умовах вони будуть згасати. Процеси, що відбуваються в контурі, викликають вільні коливання, період яких залежить від параметрів коливального контуру - електроемності конденсатора та індуктивності котушки. Видатний англійський фізик В. Томсон установив, що:

Формула Томсона

$$
T=2 \pi \sqrt{L C}
$$

$$
T=2 \pi \sqrt{L C} .
$$

Уільям (Кельвін) Томсон (1824-1907) - видатний англійський фізик. Наукові праці стосуються багатьох питань фізики, математики I техніки. Він широко застосовував термодинамічний метод для пояснення різних фізичних явищ; плідно працював у галузі вивчення електричних і магнітних явищ; відомі його праці 3 теплопровідності.

Якщо коливальний контур увімкнути в електричне коло змінного струму, то в ньому виникнуть вимушені коливання, частота яких буде дорівнювати частоті цих коливань. Їх амплітуда залежатиме від опору провідників у контурі та від співвідношення між частотою змінного струму і власною частотою контуру. У разі, коли ці частоти будуть однаковими чи близькими, в контурі виникатимуть коливання, амплітуда яких стрімко зростатиме. Тобто в коливальному контурі виникатиме резонанс. Це явище використовують у радіоприймачах, коли за допомогою настроювання контуру на певну частоту отримують сигнал потрібної радіостанції. Адже змінюючи індуктивність котушки або емність конденсатора, ми змінюємо власну частоту контуру. Якщо власна частота контуру збігається з частотою певного радіосигналу, у контурі завдяки резонансу виникає струм значно більшої сили, який передається в спеціальний пристрій для подальшого підсилення.

1. Яка будова найпростішого коливального контуру?
2. Які перетворення енергії відбуваються в коливальному контуpi?
3. Яке фазове співвідношення між перетвореннями енергії електричного і магнітного полів у коливальному контурі?
4. Які параметри коливального контуру визначають його власну частогу?
5. Коли виникає резонанс в коливальному контурі?
6. Для чого в коливальному контурі радіоприймача змінюють індуктивність чи ємність контуру?

Вправа 25

1. Коливалььний контур складається з конденсатора ємністю 2 пФ і котушки індуктивністю 0,5 мкГн. Яка частота коливань у контурі?
2. Конденсатор електроємністю 1 мкФ, заряджений до напруги 225 B , приеднали до котушки індуктивністю $10 \mathrm{~m} \mathrm{\Gamma н}$. Якою буде максимальна сила струму в колі?

3*. Коливальний контур складається з двох послідовно з'еднаних конденсаторів і котушки. Період власних коливань 50 мкс. Яким буде період коливань контуру, якщо конденсатори увімкнути паралельно?
4. Коливальний контур складаеться з котушки індуктивністю 4 m н і плоского повітряного конденсатора. Площа пластин конденсатора дорівнює $10 \mathrm{~cm}^{2}$, відстань між пластинами становить 1 мм. Яким буде період коливань контуру?

§ 49. Утворення електромагнітних хвиль

Електромагнітні коливання поширюються в просторі у вигляді електромагнітних хвиль. У них відбуваються взаємні перетворення електричного і магнітного полів, які разом утворюють змінне електромагнітне поле, що поширюеться у просторі.

Процес поширення змінного електромагнітного поля у просторі називають електромагнітною хвилею.

Для одержання електромагнітних хвиль, як і хвиль будьякої іншої природи, потрібна система, в якій відбуваються коливання. Для електромагнітних коливань такою системою може бути коливальний контур, який складається з конденсатора і котушки індуктивності.

Сучасні електронні системи дають змогу підтримувати в ньому незатухаючі коливання протягом тривалого часу, що у свою чергу створює умови для тривалого випромінювання електромагнітних хвиль. На цьому принципі працюють радіостанції, ретранслятори мобільного зв'язку, телебачення та Інтернет.

Однак сам по собі закритий коливальний контур не може випромінювати електромагнітні хвилі, оскільки його електричне поле зосереджене між обкладками конденсатора і поза його межами практично не виявляеться. Змінні магнітні поля

Мал. 3.17. Вigкритиŭ коливальний контур

Мал. 3.18. Зв'язок віякритого
контуру з генератором

зосереджені в основному всередині котушки контуру і також не поширюються назовні. Коливання електромагнітного поля можуть поширюватися в просторі, якщо вони відбуваються в так званому відкритому контурі, який має два досить довгі провідники, з'єднані один з одним через котушку індуктивності (мал. 3.17).

Для збудження електромагнітних коливань у відкритому контурі є різні способи, але найпоширеніший з них, коли котушка індуктивності відкритого коливального контуру утворює індуктивний зв'язок 3 контуром генератора незгасаючих коливань (мал. 3.18).

Завдяки явищу електромагнітної індукції в котушці антени L_{a} з'являеться змінна EPC, внаслідок чого в провідниках виникає змінний струм. Оскільки електрони, що утворюють змінний електричний струм у провідниках, рухаються прискорено, то провідники відкритого коливального контуру матимуть змінне електромагнітне поле.

> Відкритий коливальний контур, у якому відбуваються електромагнітні коливання, має змінні магнітне й електричне поля. Так, змінне електричне поле відкритого коливального контуру індукуватиме «власне» змінне магнітне поле.

Так, змінне електричне поле відкритого коливального контуру індукуватиме «власне» змінне магнітне поле.

Індуковане змінне магнітне поле, у свою чергу, спричинюватиме появу індукованого електричного поля.

Таким чином, індукційні процеси охоплюватимуть нові й нові точки простору, а утворене змінне електромагнітне поле

Мал. 3.19. Схематичне зображення електромагнітної хвилі поширюватиметься в просторі. На відстані декількох довжин хвилі від відкритого коливального контуру в просторі вже поширюється єдина електромагнітна хвиля, в якій відбуваються взаемозумовлені одночасні зміни електричного i магнітного полів - складових електромагнітного поля.

Графічно електромагнітну хвилю можна зобразити у вигляді двох

синусоїд, розміщених у взаємно перпендикулярних площинах (мал. 3.19).

Цей малюнок показує існуючу залежність значень векторів напруженості електричного поля \vec{E} і магнітної індукції \vec{B} від відстані в напрямі поширення електромагнітної хвилі. За напрямом вектори \vec{E} і \vec{B} однозначно пов'язані між собою і вектором швидкості поширення хвилі \vec{v}. Їхні коливання відбуваються у взаємно перпендикулярних площинах, причому вектор швидкості \vec{v} завжди перпендикулярний до площини коливань векторів \vec{E} і \vec{B} і визначаеться за правилом правого гвинта.

Якщо правий гвинт обертати в напрямі від вектора \vec{E} до вектора \vec{B} найкоротшим шляхом, то напрям його поступального руху збіжиться з напрямом вектора швидкості \vec{v}.

Аналітично коливальний процес, яким $\boldsymbol{\varepsilon}$ електромагнітна хвиля, описується двома рівняннями:

$$
\begin{aligned}
& E=E_{0} \sin \omega t, \\
& B=B_{0} \sin \omega t,
\end{aligned}
$$

де B_{0} і E_{0} - амплітуди хвилі; t - час спостереження; ω - циклічна частота.

Таким чином, поширення електромагнітних хвиль відбуваеться як збурення пов'язаних між собою електричного і магнітного полів в напрямі, який визначаеться за правилом правого гвинта.

1. Що називають електромагнітною хвилею?
2. Чому зак்ритий коливальний контур не випромінює електромагнітних хвиль?
3. 3 якою метою застосовують відкритий коливальний контур?
4. Як випромінюється електромагнітна хвиля?
5. Як розміщений вектор швидкості хвилі відносно векторів \bar{E} i \vec{B} ?

Вправа 26

1. У скільки разів і як зміниться швидкість поширення електромагнітної хвилі в разі переходу з вакууму в деяке середовище, якщо довжина хвилі зменшиться в 9 разів?
2. Скільки коливань відбувається в електромагнітній хвилі, що має довжину 500 m , за час, який дорівнює періоду звукових коливань з частотою 3000 Гд?
3. Електромагнітні коливання поширюються в однорідному середовищі зі швидкістю $2 \cdot 10^{8} \mathrm{~m} / \mathrm{c}$. Яку довжину хвилі мають коливання у цьому середовищі, якщо їх частота у вакуумі 1 МГц?
4. Електромагнітні хвилі поширюються в середовищі зі швидкістю $2 \cdot 10^{8} \mathrm{~m} / \mathrm{c}$. Знайдіть довжину хвилі, якщо у вакуумі вона дорівнює 6 м?
5. Телевежа розміщена на межі прямої видимості від приймальної антени телевізійного приймача. Знайдіть відстань між ними, якщо відомо, що висота телевежі 300 m , а висота приймальної антени 10 m .
6. Електроемність конденсатора змінної емності в контурі радіоприймача може змінюватися від 50 до 450 пФ. Індуктивність котушки при цьому не змінюється і дорівнюе $0,6 \mathrm{mГн}$. Які довжини хвиль може приймати радіоприймач?
7. На яку довжину хвилі налаштований коливальний контур, що складаеться з котушки індуктивністю $1,6 \mathrm{~m} \mathrm{\Gamma н}$ і конденсатора емністю 400 пФ?
8. Яку індуктивність повинна мати котушка, щоб разом із конденсатором емністю 0,005 мкФ скласти контур, що резонуе на електромагнітну хвилю завдовжки 500 м?
9. Радіостанція працює на хвилі завдовжки 150 м. Яку емність мае конденсатор у коливальному контурі передавача, якщо індуктивність його котушки $0,2 \mathrm{~m} \mathrm{\Gamma н}$?
10. Хвилю якої довжини прийматиме радіоприймач, коливальний контур якого складаєтьея з конденсатора емністю 75 пФ і котушки індуктивністю $1,34 \mathrm{~m} \mathrm{\Gamma н}$? Знайдіть частоту власних коливань контуру радіощриймача.

11*. У разі зміни струму в котушці на 1 А за 0,6 с у ній індукуеться EPC $0,23 \mathrm{mB}$. Яку довжину хвилі випромінюватиме генератор, у коливальний контур якого входить ця котушка і конденсатор емністю 14,1 пФ?

12*. Основна частота сигналів телебачення $50 \mathrm{MГц}. \mathrm{Про-}$ тягом 0,04 с передається 500000 елементів зображення. Визначте кількість довжин хвиль, які припадають на один елемент зображення.

13*. На яку довжину хвилі налаштований коливальний контур, що складаеться з котушки індуктивністю 2 m мн і плоского конденсатора? Простір між обкладками конденсатора заповнено речовиною з діелектричною проникністю 11. Площа обкладок конденсатора $800 \mathrm{~cm}^{2}$, а відстань між ними 1 cm .

§ 50. Шкала електромагнітних випромінень

Дослідження, що проводили вчені впродовж тривалого часу, не виявили будь-яких обмежень щодо частоти чи довжини хвилі електромагнітного випромінення. Тобто не має сенсу вести мову про найменшу або найбільшу частоту випромінення чи обмежувати довжину хвилі певними значеннями. Може лише йтися про певний діапазон хвиль, виявлених і вивчених сучасною наукою.

Для наочного уявлення про різноманітність електромагнітних випромінень та залежність їхніх властивостей від довжини хвилі складено шкалу, один з варіантів якої подано на форзащі. Їі поділено на умовні діапазони: низькочастотні хвилі, радіохвилі, інфрачервоне випромінення, видиме світло, ультрафіолетове, рентгенівське та гамма-випромінення. Такий поділ зумовлений природою їх виникнення і не має чітких меж між діапазонами. Наприклад, якщо радіохвилі породжуються електромагнітними коливаннями, збуреними в коливальному контурі певної ємності та індуктивності, чим визначаеться їх довжина хвилі, то гамма-промені виникають унаслідок ядерних процесів, пов'язаних з радіоактивним розпадом.

Звичайно, існує відмінність у взаємодії електромагнітних хвиль з речовиною та особливостями поширення їх у просторі. Наприклад, видиме світло цілком поглинаеться аркушем цупкого паперу, а рентгенівське випромінення здатне проникати крізь людське тіло.

Розглянемо шкалу електромагнітних випромінювань докладніше.

Низькочастотне випромінення виникае в результаті роботи різних електротехнічних пристроїв, які живляться змінним струмом низької частоти. Через свою низьку частоту воно має малу енергію, тому поки не знайшло широкого застосування для передачі енергетичних потоків та інформації на значні відстані.

Радіохвилі по-різному поширюються в просторі залежно від довжини їхньої хвилі. Довгі ($\lambda=10000 \div 1000$ м) і середні ($\lambda=1000 \div 100$ м) радіохвилі внаслідок заломлення і дифракції в атмосфері огинають земну поверхню.

Радіохвилі короткого діапазону ($\lambda=100 \div 10$ м) відбиваються від йоносфери і таким чином потрапляють у будь-яку точ-

У широкому діапазоні радіохвиль вони подіпяються на довгі, середні, короткі та ультракороткі радіохвилі.

ку земної кулі. Ультракороткі радіохвилі ($\lambda<10$ м), на яких зараз здійснюеться трансляція телебачення, мобільний зв'язок, космічний радіозв'язок, не затримуються атмосферою, і тому в земних умовах поширюються методом ретрансляції в межах «прямої видимості», практично не заломлюючись.

> Інфрачервоне випромінення називають також тепповим, оскільки воно здійснюється всіма нагрітими тілами.

У широкому розумінні оптичний діапазон електромагнітних хвиль охоплюе інфрачервоне випромінення, видиме світло й ультрафіолетове випромінення. Інфрачервоне випромінення лежить за межами сприйняття оком хвиль, довжина яких більше 760 нм і простягається до 0,1 мм. Їх випромінюють усі нагріті тіла, завдяки чому ми відчуваємо теплоту. 3 підвищенням температури довжина хвилі зміщуеться в бік коротших хвиль. Інфрачервоне випромінення слабко поглинається повітрям і добре відбивається від поверхні твердих тіл. Цю їхню властивість використовують у системах так званого *нічного бачення*.

Видиме світло - це той діапазон електромагнітних хвиль, який сприймається людським оком. Установлено, що він простягається від 380 до 760 нм. Характерним для нього є те, що залежно від довжини хвилі око сприймає світлове випромінення різного кольору - від червоного до фіолетового. Властивості видимого світла досить різноманітні, з ними ми ознайомимося в наступному розділі.

> Ультрафіолетове випромінення майже повністю поглинається звичайним віконним склом.

3 боку короткохвильової межі видимого світла знаходиться ультрафіолетовий діапазон випромінення, яке не сприймається оком людини. Водночас багато речовин випромінюють видиме світло, якщо на них потрапляє ультрафіолетове проміння. На цьому грунтуеться метод неруйнівного аналізу речовин, коли за кольором світіння, наприклад, визначають харчову якість продуктів. Відомий також метод виявлення фальшивих грошових кушюр за допомогою ультрафіолетового опромінення. Ультрафіолетове випромінення має сильну бактерицидну дію, тому його широко використовують для стерилізації різних медичних матеріалів та інструментів. Разом з тим воно може бути шкідливим для людського організму, наприклад руйнувати сітківку ока або викликати опіки шкіри. www.testosvit.com

Рентгенівське випромінення відоме багатьом з нас при проходженні медичного обстеження. Уперше його отримав і дослідив властивості відомий фізик, українець за походженням I. Пулюй (1845-1918). Однак трапилося так, що першим повідомив про відкриття нового виду випромінення німецький фізик В.К. Рентген (1845-1923), якому за це відкриття присуджено першу Нобелівську премію в галузі фізики.

Рентгенівські промені отримують за допомогою спеціальних рентгенівських трубок або внаслідок випромінювання атомів і молекул, природа якого вивчатиметься пізніше в атомній фізиці. Рентгенівське випромінення має високу прониклу здатність, завдяки якій воно може проникати крізь досить товсті шари речовини, навіть метали. Докладніше про рентгенівське випромінення буде викладено в атомній фізиці.

Рентгенівське випромінення має велику проникну здатність. Тому його використовують у медицині для обстеження внутрішніх органів, у промисловості для виявлення внутрішніх дефектів металевих деталей, у дослідженнях внутрішньої будови тіл.
Наступний діапазон шкали - гамма-випромінення - належить до ядерних процесів, з якими ми детальніше ознайомимося в одному з наступних розділів.

1. Яким чином побудована шкала електромагнітних випромінень? Чи існує в ній межа ї початку чи кінця?
2. На які діапазони поділяють шкалу випромінень?
3. Які особливі властивості має кожний з діапазонів електромагнітних хвиль?
4. У чому полягає драматизм відкриття ренттенівських променів?

§ 51. Pagioxbuлi

Радіохвилі належать до електромагнітних випромінень довжиною хвилі від декількох кілометрів до декількох міліметрів. У короткохвильовій частині радіохвилі плавно переходять у діапазон інфрачервоного випромінення, хоча чіткої межі між цими видами випромінень не виявлено. У своїй низькочастотній частині радіохвилі межують з низькочастотним випроміненням, яке утворюється при роботі різних електротехнічних пристроїв, що живляться змінним струмом низької частоти.

Основною ознакою діапазону радіохвиль e їх поширення на значні відстані, що робить їх цінними для передачі інформації. Радіохвилі поділяються на довгі ($10000 \div 1000$ м), середні ($1000 \div 100$ м), короткі ($100 \div 10$ м) та ультракороткі ($<10 \mathrm{~m}$). www.testosvit.com

У науці й радіотехніці радіохвилі поділяють на довгі ($\mathbf{1 0} \mathbf{0 0 0 +}$ 1000 м), середні ($1000 \div 100$ м), короткі ($100 \div 10$ м) та ультракороткi (< 10 m).

Хвилі цих частин радіодіапазону мають характерні лише для них властивості. Так, довгі і середні хвилі зазнають рефракції і дифракції в атмосфері, внаслідок чого вони здатні огинати поверхню земної кулі (мал. 3.20). Проте для цього радіопередавачі повинні мати дуже велику потужність, а передавальні антени - значні розміри. Та й кількість станцій, які можуть працювати у цій частині діапазону без взаємних перешкод не може бути великою. Тому нині для далекого зв'язку ïх майже не застосовують.

Радіозв'язок на далекі відстані частіше здійснюють за допомогою коротких хвиль. Вони, хоча

Мал. 320. Довгі і сереgні раgіохвилі огинають земну поверхню й не огинають земну поверхню, проте відбиваються від йонізованого шару атмосфери (йоносфери) ніби від дзеркала. Зазнаючи багаторазового відбивання від цього шару та від поверхні Землі, короткі хвилі можуть поширюватися по всій земній кулі (мал. 3.27). Проте внаслідок добового та річного коливання висоти йонізованого шару атмосфери зв'язок на коротких хвилях не сталий і залежить від пори року та часу доби.

Мал. 321. Короткі раgioxвилі вigбиваються вig йонізованого шару повітря

Мал. 3.22. Ультракороткі pagioхвилі вuхоgять за межі атмосфери

Ультракороткі хвилі в земних умовах поширюються в межах «прямої видимості», практично не заломлюючись. Висока частота цих хвиль дае змогу здійснювати частотну модуляцію, яка забезпечує високу якість зв'язку. Крім того, у цьому діапазоні можна використовувати багато радіопередавачів, оскільки їх частотний діапазон досить щільний.

Ультракороткі хвилі використовують також для зв'язку з космічними апаратами (мал. 3.22), оскільки вони майже вільно проходять крізь йоносферу.

У земних умовах для забезпечення далекого радіозв'язку з використанням ультракоротких хвиль будуються спеціальні ретрансляційні станції (мал. 3.23).

Перебуваючи на відстані «прямої видимості", вони приймають хвилі від однісї станції і передають їх до іншої. На цьому принципі працює, зокрема, мобільний зв'язок.

Мал. 3.23. У системах раgіозв'язку
на ультракоротких хвилях застосовують лінії з ретрансляторами

1. На які частини поділяють радіодіапазон електромагнітних хвиль?
2. Чому в разі використання коротких хвиль досягають значних відстаней зв’язку?
3. У чому полягає причина відмінності у процесі розширення коротких хвиль: удень і вночі; взимку і влітку?
4. Які властивості ультракоротких хвиль?
5. Чому ультракороткі хвилі в наш час набули широкого застосування?

Головне в posgini 3

1. Коливання - де одна з найпоширеніших форм руху в навколишньому світі. Основною умовою їх виникнення є поява зовнішнього фактору, завдяки якому рух повторюється з часом.

Коливання бувають періодичні і неперіодичні. Під час періодичних коливань стан тіла чи системи повторюеться через однакові інтервали часу.
2. Коливання, що відбуваються в замкнутих системах, називаються вільними. У реальних коливальних системах вільні коливання згасають. В ідеальних системах, коли відсутні втрати енергії, коливання будуть незгасаючими. Ĩх називають власними. Наприклад коливання маятників без тертя.
3. Період коливань математичного маятника залежить від його довжини і прискорення вільного падіння:

$$
T=2 \pi \sqrt{\frac{l}{g}} .
$$

Період коливань пружинного маятника залежить від маси тягарця і жорсткості пружини:

$$
T=2 \pi \sqrt{\frac{m}{R}} .
$$

Період коливань математичного маятника не залежить від амплітуди і маси.
4. Вільні коливання відбуваються за законами синуса чи косинуса. Такі коливання називають гармонічними. Наприклад: $x=A \sin (\omega t+\alpha)$, де α - амплітуда коливань, ω - частота коливань, A - початкова фаза, t - час.
5. Якщо на коливальну систему періодично діє змінна сила, то в системі відбуваються вимушені коливання. Частота вимушених коливань дорівнюе частоті змушуючої сили. Якщо частота змушуючої сили дорівнюе частоті коливань самої системи, настає резонанс - різке зростання амплітуди вимушених коливань. Прикладом вимушених коливань е розгойдування дитячої гойдалки.
6. Поширення коливань у пружному середовищі називають хвильовим процесом, або механічною хвилею. 3 хвилею переноситься енергія, відбувається поширення енергії в просторі від джерела коливань. Хвилі бувають поздовжні і поперечні.

Універсальною характеристикою хвильового процесу будьякої природи є довжина хвилі. Це відстань між двома сусідніми точками поширення хвилі, які коливаються в одній фазі.

Тобто за один період хвиля поширюеться на відстань, що дорівнюе довжині хвилі.

Швидкість поширення хвилі дорівнюе:

$$
v=\frac{\lambda}{T} .
$$

7. Вільні електромагнітні коливання виникають у коливальному контурі, який складається з конденсатора і котушки індуктивності. Вони є згасаючими внаслідок втрат енергії на нагрівання провідників, осердь, випромінювання в простір. Якщо позбутися таких втрат енергії в контурі, то коливання відбувалися б нескінченно довго, тобто стають власними. Період власних коливань контуру визначається за формулою Томсона:

$$
T=2 \pi \sqrt{L C} .
$$

8. В електричних колах можна одержати змінний струм як вимушені електромагнітні коливання. Найпростішими способами одержання змінних струмів є: обертання рамки у магнітному полі або зміна магнітної індукції (наприклад, обертання електромагніта) біля певним чином розташованих провідників.
9. Електромагнітна хвиля - це змінне електромагнітне поле, яке поширюється в просторі зі швидкістю світла.

Електромагнітна хвиля має енергію. В усіх процесах, які відбуваються з електромагнітними хвилями, виконуеться закон збереження енергіі.
10. Усі відомі людині електромагнітні хвилі за довжиною хвилі або частотою умовно поділені на окремі діапазони: низькочастотне випромінення (довжина хвилі понад 10000 m), paдіохвилі, які також поділяються на свої діапазони, з довжиною хвилі від кількох сантиметрів (ультракороткі хвилі) до 10000 m (довгі хвилі); інфрачервоне випромінення, довжина хвилі якого лежить у межах від 0,1 мм до 760 нм; видиме світло з довжиною хвилі від 380 до 760 нм; ультрафіолетове випромінення, довжина хвилі якого простягається від фіолетової межі видимого світла до кількох нанометрів; рентгенівське випромінення в діапазоні довжин хвиль від 10^{-8} до $10^{-11} \mathrm{~m}$; гаммавипромінення, яке має довжину хвилі менше $10^{-11} \mathrm{~m}$.

Розділ 4

Засвоївши матеріал цього розділу, ви будете знати:

- основні етапи розвитку уявлень про природу світла, імена вчених, які зробили вагомий внесок у становлення оптики як теорії світла;
- значення швидкості поширення світла у вакуумі та інших оптичних середовищах, розмір сталої Планка як фундаментальної константи;
закони заломлення світла, рівняння А. Ейнштейна для фотоефекту; фізичні величини, що характеризують основні світлові явища (показник заломлення, енергія та імпульс фотона, довжина хвилі світла); суть корпускулярно-хвильового дуалізму світла;
- приклади прояву оптичних явищ у природі та іхнє застосування в науці і техніці, на виробництві.

Ви зможете пояснити:

- квантові та хвильові властивості світла, його корпускулярно-хвильову природу:
- сутність інтерференцї̆ і дифракції світлових хвиль, поляризацїт та дисперсії світла, фотоефекту, люмінесценції;
природу неперервного спектра світла.

Ви будете здатні:

- розв'язувати задачі, застосовуючи закони заломлення світла, формулу Планка і рівняння А. Ейнштейна для фотоефекту; розрізняти хвильові і квантові властивості світла;
- досліджувати світлові явища і користуватися найпростішими оптичними приладами:
- обгрунтувати роль сучасних уявлень про природу світла в фізичній картині світу.

§ 52. Світло як електромагнітна хвиля. Розвиток уявлень про прироgу світла

Уявлення про природу світла як одного з основних джерел сприйняття людиною навколишнього світу розвивалися впродовж багатьох століть. У давні часи вони були наївними на кшталт того, що наші очі мають невидимі «щупальці», за допомогою яких формуються зорові образи предметів, які ми спостерігаємо. Звичайно, такі примітивні погляди не відповідають справжній суті природи світла, яка нині отримала гоунтовне пояснення як з боку хвильової теорії світла, так і на основі квантової фізики.

У кпасичній фізиці існували два погляди на природу світла хвильова і корпускулярна теорії світла.

Між цими двома теоріями точилася тривала дискусія, у витоків якої стояли відомі вчені: I. Ньютон (1643-1727), який вважав світло потоком частинок, названих ним корпускулами, і X. Гюйгенс (1629-1695), на переконання якого світло це хвилі, які заповнюють навколишній простір і проникають усередину тіл. Обидві теорії тривалий час існували паралельно завдяки авторитету цих учених і спроможності пояснити

[^3]найпростіші світлові явища. Так, I. Ньютон завдяки корпускулярним уявленням пояснив прямолінійне поширення світла і дисперсію як наслідок закону інерції. X. Гюйгенс на підставі хвильових уявлень пояснив відбивання і заломлення світла.

Проте згодом перевагу почали надавати хвильовій теорії світла, оскільки в той час були відкриті світлові явища, які можна було пояснити лише з позицій поширення світла як хвильового руху. Так, на початку XIX ст. Т. Юнг (1773-1829) спостерігав інтерференцію (підсилення й ослаблення світлових пучків під час їх накладання) і дифракцію світла (огинання світлом перешкод), які не можна було пояснити з позицій корпускулярної гіпотези світла I. Ньютона. Пізніше О.Ж. Френель (1788-1827), повторюючи досліди Т. Юнга, переконався у хвильовій природі світла і сформулював принцип поширення світла як хвилі (принцип Гюйгенса-Френеля). Завдяки поясненню на його основі світлових явищ хвильова теорія остаточно утвердилася як домінуюча в тлумаченні природи світла. Тріумф хвильової теорії світла підтвердив Дж. Максвелл (1831-1879), який теоретично довів, що світло - це окремий випадок електромагнітного випромінення. Ним було доведено, що світло є поширенням у просторі електромагнітних хвиль певної частоти (довжини хвилі). Крім видимого світла до електромагнітного випромінення належать також радіохвилі, інфрачервоне, ультрафіолетове, рентгенівське і жорстке гамма-випромінення (розгорнута шкала електромагнітного випромінення подана на форзаці).

Як відомо, основними характеристиками електромагнітного випромінення e частота v i довжина хвилі λ, які обернено пропорційні між собою і пов'язані зі швидкістю світла співвідношенням: $\lambda=\frac{c}{v}$.

На початку XX ст. з розвитком квантової теорії уявлення про природу світла почали докорінно змінюватися. Коли А. Ейнштейн (1879-1955) висловив припущення про квантові властивості світла - це було сприйнято неоднозначно. Він стверджував, що світло є потоком мікрочастинок, названих ним фотонами, які несуть найменшу порцію світлової енергії. Згодом з'ясувалося, що корпускулярна теорія світла, як і хвильова, також має право на існування, особливо в тлумаченні випромінювання і поглинання світла.

Фотон - це корпускула світла, яка несе мінімальну пориію світлової енергіі, названу квантом світла.

Обмежений характер хвильової теорії підтвердили досліди О.Г. Столетова (1839-1896) з фотоефекту, які показали, що в цих явищах світло поводить себе подібно до потоку частинок, які мають певну енергію та імпульс і підпорядковуються законам квантової фізики.

Отже, численні дослідження світлових явищ демонструють неоднозначний прояв властивостей світла: в одних випадках (інтерференція, дифракція) вони засвідчують хвильову природу світла, в інших (випромінювання і поглинання) - виразніше проявляється його корпускулярна природа. Тому світлу властивий корпускулярно-хвильовий дуалізм - воно має як безперервні, хвильові властивості, так і дискретні, корпускулярні.

Гіпотезу про подвійну природу світла - так званий корпус-кулярно-хвильовий дуалізм - уперше висловив А. Ейнштейн.

До оптичного діапазону спектра належать видиме світло, інфрачервоне та ультрафіолетове випромінювання. Воно виникає, зокрема, внаслідок нагрівання тіл, завдяки тепловому руху атомів і молекул. Чим сильніше нагріте тіло, тим більша частота, на яку припадає максимум. За певної темцератури воно стає видимим спочатку в червоному діапазоні хвиль, а з підвищенням температури починає зміщуватися до жовтого і далі.

> Джерела світла поділяють на природні і штучні, тобто ті, які виготовляє людина для своїх життєвих потреб.

Як відомо, світло випромінюють різні джерела - Сонце, зорі, свічка, вольфрамова нитка електричної лампи, блискавка, розжарені предмети тощо. Усі вони є джерелами світла, тому що випромінюють електромагнітні хвилі, які сприймає людське око. Крім того, приймачами світлового випромінення можуть бути фотометри, фотоелементи та інші прилади, здатні фіксувати енергію світлового потоку.

Око людини є найдосконалішим приймачем електромагнітного випромінення оптичного діапазону. Видиме світло, яке воно сприймає, має довжину хвилі від 380 нм (фіолетовий колір світла) до 760 нм (червоне світло). Найвищу чутливість воно має в діапазоні зеленого світла (близько 550 нм), на який припадає максимум спектра сонячного випромінення.

Для того щоб тіло стало джерелом світла, йому треба надати певної енергії, завдяки якій його атоми почнуть випромінювати світло. Найпростішим і найпоширенішим способом є теплопередача, яка відбувається за рахунок нагрівання тіл. Наприклад, сонячне світло - це теплове випромінення, яке www.testosvit.com

відбувається внаслідок розжарення сонячної поверхні (фотосфери) до температури понад 6000 K завдяки ядерним реакціям, що відбуваються всередині Сонця. Так само тепловим випроміненням є світло від електричної лампи розжарювання, в якій вольфрамова нитка під дією електричного струму нагрівається до високої температури (близько 3000 K).

Світло можуть випромінювати атоми газів під час електричного розряду. Прикладом такого джерела світла є блискавка. Під час деяких хімічних реакцій, які відбуваються з виділенням енергіі, частина ї може йти на випромінювання світла. Це так зване холодне світіння, яке спостерігається, наприклад, у деяких живих організмів (світлячки, бактерії). Існують й інші способи збудження атомів, які випромінюють світло, позбавляючись таким чином надлишкової енергії.

Залежно від характеру поширення світлових променів розрізняють точкові джерела світла і джерела напрямленого світла. Точковими називають такі джерела, розмірами яких порівняно з відстанями поширення світла можна знехтувати. Від них світло поширюється рівномірно в усіх напрямах, але в розрахунках освітленості поверхні слід враховувати напрям падаючого променя. У джерел напрямленого світла промені вважаються паралельними, і тому освітленість поверхні від такого джерела буде однаковою на всій площі, куди падає світло. Ними є точкові джерела, нескінченно віддалені від поверхні, що освітлюеться. Класичним прикладом такого джерела є Сонце.

Природне сонячне світло - неполяризоване. Проте відбиті світлові промені завжди частково чи повністю поляризовані.

Світлу як електромагнітному випромінюванню за певних умов властива поляризація, тобто орієнтація коливань векторів напруженості електричного поля \vec{E} або індукції магнітного поля \vec{B} у певному напрямі, наприклад перпендикулярно до поширення хвилі. Уперше це явище спостерігав у 1669 р. данський вчений Е. Бартолін під час спостереження подвійного заломлення променя світла в кристалі ісландського шнату. При проходженні світла крізь нього утворюються два промені, один з яких має особливі властивості.

З'ясувалося, що існують кристалічні речовини, які мають оптичну анізотропію - неоднорідність оптичних властивос-

> Людське око не відрізняє поляризоване світпо від звичайного. Проте окремі комахи, наприклад бджоли, мають таку здатність.

тей в різних напрямах. У разі проходження світла крізь такі кристали воно поляризуеться, тобто вектори \vec{E} і \vec{B} електромагнітного поля тривалий час залишаються в одній площині. Наприклад, кристал турмаліну має різні значення показника заломлення залежно від напряму орієнтації граней кристалічної гратки. Тому він є природним поляризатором світла.

Для виявлення поляризації світла застосовують пристрої, які називають аналізаторами. Вони мають іншу площину поляризації, і тому за істотним зменшенням інтенсивності світла можуть виявляти поляризоване світло. На цьому принципі, зокрема, грунтуеться дія цукриметрів - приладів, за допомогою яких визначають концентрацію цукру в цукровому розчині, наприклад мелясі.

1. Які підходи до пояснення природи світла історично склалися в фізиці?
2. Які сучасні погляди на природу світла?
3. Завдяки яким фізичним процесамтіла стають джерелами світла?
4. Які види світлового випромінення належать оптичному діапазону?
5. У чому полягає суть поляризації світла? Де використовують це явище в практичних цілях?

§ 53. Поглинання і розсіювання світла. Bigбивання світла

Світло, поширюючись у середовищі, взаємодіє з ним, унаслідок чого відбувається поглинання, розсіювання чи відбивання світла. Усі ці явища є результатом взаємодії електромагнітного випромінення з речовиною, внаслідок якої частина світлової енергії перетворюеться в інші види енергії, наприклад теплову. Так, нам добре відомо, що під дією сонячного проміння тіла нагріваються. 3 точки зору квантових уявлень поглинання світла - це процес захоплення фотонів атомами речовини, внаслідок якого вони віддають їм свою енергію.

> Поглинальну здатність середовищ характеризує коефіцієнт поглинання, який вказує, як змінюється інтенсивність випромінювання з глибиною проникнення його в середовище.

Проходження світла крізь середовище супроводжуеться також розсіюванням світлового потоку на частинках речовини або інших мікрооб'єктах, розміри яких менші за довжину хвилі світла. Воно може відбуватися без зміни частоти світла (так зване релеевське розсіювання) або комбінаційним, коли в

[^4]спектрі світла, що поширюеться в середовищі, виникають спектральні лінії, частота яких відрізняеться від первинного (збуджуючого) світла. Частота і розміщення додаткових спектральних ліній залежать від молекулярної будови речовини. Тому комбінаційне розсіювання широко використовують у спектральному аналізі для дослідження особливостей молекулярної структури речовин.

Розсіювальне (дифузне) відбивання світла спостерігається від так званих шорстких матових поверхонь.

Світлове випромінення може зазнавати відбивання на межі двох середовищ, тобто досягаючи межі поділу або якої-небудь перещкоди, воно може змінити напрям і повернутися в середовище, звідки вийшло. Відбивання світла може бути дзеркальним, тобто таким, коли справджується закон відбивання світла, і розсіювальним (дифузним), коли світлові промені розходяться в різні боки, відбиваючись від нерівностей поверхонь, на які падають. Останне має місце за умови, що розмір цих нерівностей сумірний з довжиною хвилі світла. Тому поверхня, дзеркальна для ультрафіолетового світла, може не бути такою для інфрачервоного діацазону світла, оскільки довжина ї хвилі більша і може бути близькою до розміру нерівностей поверхні.

Дзеркальному відбиванню світла притаманний закон, відомий нам з курсу фізики 7 класу: падаючий \boldsymbol{i} відбитий промені лежать в одній площині з перпендикуляром до відбиваючої поверхні в точці падіння світлового променя; перпендикуляр ділить кут між падаючим і відбитим променями на дві рівні частини.

Цей закон отримав тлумачення як у корпускулярній, так i з боку хвильової теорії світла. 3 точки зору першої він пояснюється пружним співударянням корпускули світла (фотона) з поверхнею за законами механіки. В основу пояснення закону відбивання світла хвильовою теорією покладено принципи Ферма і Гюйгенса-Френеля.

Відповідно до принципу Ферма світло поширюється з початкової в кінцеву точку таким чином, щоб час поширення світлової хвилі був мінімальним. Принцип Гюйгенса-Френеля вказує на те, що кожна точка простору, якої досягає фронт світлової хвилі, стає джерелом вторинних світлових хвиль.

Пояснимо тепер закон відбивання світла, скориставшись уявленнями про хвильову природу світла. Перша частина закону вказує на те, що напрям відбитого світлового променя не може бути довільним. Встановлено, що через дві прямі, відwww.testosvit.com

різками яких є падаючий $A O$ і відбитий $O B$ промені (мал. 4.1), можна провести лише одну площину N, перпендикулярну до площини відбиваючої поверхні M.

Нехай на поверхню $M N$ падае світлова хвиля, фронт якої поширюеться вздовж прямої $A B$ (мал. 4.2). Коли світловий промінь досягає точки A, то згідно з принципом Гюйгенса-Френеля ця точка стає джерелом нової сферичної хвилі. За час, поки фронт падаючої хвилі досягне точки C, фронт хвилі від точки A утворить півсферу радіуса r, де $r=A D$. За цей час такі самі хвилі поширюватимуться й від інmих точок поверхні $M N$, утворюючи новий фронт хвилі $C D$ відбитого світла. Для визначення напряму

Мал. 4.1. Закон віgбивання

Мал. 4.2. Bigбивання
світлової хвилі віg поверхні

169 його поширення розглянемо трикутники $A C D$ і $A B C$. Оскільки їхні сторони $A D=B C$ і $A B=C D$, а $A C$ - спільна, то ці трикутники є рівними.

Як відомо, рівні трикутники мають однакові кути, тобто кути α і β між променем і перпендикуляром в точці падіння променя як доповняльні до рівних кутів, також будуть рівними: $\angle \alpha=\angle \beta$, тобто кут відбивання світлового променя від поверхні дорівнює куту його падіння.

Отже, на основі хвильових уявлень про природу світла доведена й друга частина закону відбивання світла, який підтверджується експериментально. Установимо на оптичному диску плоске дзеркало і спрямуємо на нього вузький пучок світла (мал. 4.3). За допомогою позначок на диску можна легко переконатися, що кут між падаючим променем і перпендикуляром (кут падіння) дорівнюе куту між перпендикуляром і відбитим променем (куту відбивання).

Таким чином, поширюючись у середовищі, світло взаемодіє з ним, внаслідок чого воно може поглинатися, розсіюватися або відбиватися. Усі ці процеси отримали тлумачен-

Мал. 43. Оттичний guck

ня з точки зору хвильової чи корпускулярної теорії світла, підтверджуючи складну природу цього явища, яке в сучасній фізиці відображає корпускулярно-хвильовий дуалізм світла.

1. Які явища відбуваються в процесі поширення світла в середовищі?
2. Чим пояснюеться поглинання світла в середовищі?
3. Яка природа розсіовання світла?
4. У чому полягає суть закону відбивання світла?
5. Яким чином можна експериментально підтвердити справедливість закону відбивання світла?

§ 54. Дзеркала. Ogeржання зображень за допомогою gзеркал

Явище відбивання світла широко використовуеться в техніці і в побуті, коли треба змінити напрям поширення світлових пучків на протилежний. З цією метою застосовують дзеркала, які за формою відбиваючої поверхні можуть бути плоскі, сферичні, параболоїдні тощо.

Міркуваннями щодо побудови зображення точки, одержаного за допомогою дзеркала, можна скористатися для знаходження зображення предмета, представляючи його як сукупність точок.

Мал. 4.4. Побуgова зображення точки, одержаного за допомогою дзеркала

Плоскі дзеркала - найпоширеніші у використанні пристрої, дія яких r'рунтується на законах відби- $^{\prime}$ вання світла. Сумісна дія дзеркала й ока людини дають змогу бачити зображення предметів, від яких на дзеркальну поверхню падають світлові пучки. Для прикладу побудуємо зображення предмета, одержане за допомогою плоского дзеркала (мал. 4.4).

Нехай на плоске дзеркало $M N$ падає пучок променів світла від точки S. Зобразимо два промені, які падають на дзеркало під різними кутами α_{1} i α_{2}. Кути відбивання β_{1} і β_{2} за законом відбивання дорівнюватимуть відцовідно кутам па-

діння світлових променів. Унаслідок цього від дзеркала поширюватиметься пучок світла, який розбігається. Якщо тепер ці відбиті промені продовжити за площину дзеркала, то вони перетнуться в точці S^{\prime}. Сполучивши прямою точки S і S^{\prime}, одержимо два рівні трикутники $\triangle S A O$ і $\triangle S^{\prime} A O$. За умови рівності цих трикутників довжина відрізків SO і $S^{\prime} O$ однакова. Отже, можна зробити висновок, що предмет i зображення, одержане в плоскому дзеркалі, є симетричним відносно площини дзеркала; воно завжди уявне, оскільки знаходиться на перетині продовження розбіжних променів.

Тому можна побудувати зображення, отримане в плоскому дзеркалі, скориставшись простими правилами:

- від точкового джерела світла опустити перпендикуляр до поверхні дзеркала і продовжити його за ї площину;
- виміряти відстань від точкового джерела світла до дзеркала і відкласти її на продовженні перпендикуляра за дзеркалом;
- кінець цього відрізка визначатиме положення уявного зображення точкового джерела світла, одержаного за допомогою плоского дзеркала.

Побудова зображень, одержаних за допомогою сферичних дзеркал, rрунтується на тих самих законах відбивання світла, що й для плоских дзеркал. Однак сферична поверхня цих дзеркал не лише змінює напрям поширення світла, але й впливає на конфігурацію падаючих пучків світла. Наприклад, паралельний пучок світла, падаючи на вгнуту дзеркальну поверхню, може збігатися в одній точці F, яка називається фокусом сферичного дзеркала (мал. 4.5). I навпаки, якщо джерело світла помістити у фокусі сферичного дзеркала, одержимо паралельний пучок світла. Ця властивість використовуеться у відбивачах світла (рефлекторах) ліхтарях і потужних прожекторах, які мають сферичну або параболоїдну форму.

Побудова зображень, утворених за допомогою сферичних дзеркал, підпорядковуеться формулі сферичного дзеркала:

Мал. 4.5. Bigбивання світла у сферичному gзеркалі

$$
\frac{1}{F}=\frac{1}{d}+\frac{1}{f},
$$

де F - фокусна відстань сферичного дзеркала, d - відстань від дзеркала до предмета; f - відстань від дзеркала до зображення.

Встановлено, що фокусна відстань сферичного дзеркала дорівнює половині радіуса сферичної поверхні, що утворює дзеркало: $F=\frac{R}{2}$. В опуклих дзеркал фокусна відстань має від'ємне значення, що треба враховувати у формулі сферичного дзеркала.

1. Які за формою дзеркала вам відомі?
2. Чи залежать закони відбивання світла від форми дзеркала?
3. Якими правилами можна скористатися, щоб побудувати зображення точки, одержане за допомогою плоского дзеркала?
4. Як можна знайти фокусну відстань сферичного дзеркала?
5. Чому дорівнює фокусна відстань плоского дзеркала?

Вправа 27

1. Як можна освітити дно криниці за допомогою плоского дзеркала сонячними променями, що падають на землю під кутом 25° ?

2*. Яке заввишки мае бути плоске дзеркало, щоб людина побачила себе в ньому на повен зріст?
3. Радіус сферичної поверхні увігнутого дзеркала дорівнює 48 см. Яка фокусна відстань цього дзеркала?
4. Радіус сферичної поверхні опуклого дзеркала дорівнює 1 м. На відстані 0,2 м від дзеркала знаходиться предмет. Де буде його зображення?
5. На якій відстані буде зображення предмета в опуклому дзеркалі, радіус сферичної поверхні якого дорівнює 40 см, якщо предмет розміщений на відстані 30 см від дзеркала?

§ 55. Заломлення світла. Закони заломлення світла

Як відомо, на межі двох середовищ світло може зазнавати як відбивання, так і заломлення. Проведемо такий дослід. Наллемо в скляну посудину воду, підфарбовану спеціальною речовиною, яка світиться під дією світла. Над поверхнею води пустимо деяку кількість диму, яќий також дає можwww.testosvit.com

ливість бачити хід світлових променів. Якщо тепер спрямувати вузький пучок світла на поверхню води під певним кутом, то можна помітити, що на поверхні води він розділиться на два пучки (мал. 4.6). Один з них буде відбитим від поверхні води згідно із законом відбивання світла, а другий - пройде у воду, відхилившись при цьому від прямолінійного напряму свого поширення, тобто відбудеться його заломлення.

Мал. 4.6. Bigбивання і заломлення світла на межі gвох сереgовищ

Це пояснюється тим, що швидкість поширення світла в різних середовищах неоднакова і вона відрізняється від швидкості світла у вакуумі. Ix співвідношення визначає показник заломлення речовини n, який показуе, у скільки разів швидкість світла у вакуумі c перевищує швидкість поширення світлових хвиль v у даному середовищі:

$$
n=\frac{c}{v}
$$

У XVII ст. голландський фізик В. Снелл встановив закон заломлення світла: падаючий $і$ заломлений промені лежать в одній площині з перпендикуляром до межі двох середовицу у точці падіння променя; кут падіння α світлового променя на поверхню межі поділу двох середовищ пов'язаний з кутом заломлення γ співвідношенням (мал. 4.7):

$$
n_{1} \sin \alpha=n_{2} \sin \gamma,
$$

або

$$
\frac{n_{2}}{n_{1}}=\frac{\sin \alpha}{\sin \gamma},
$$

де n_{1} - показник заломлення середовища, з якого падає світло; n_{2} - показник заломлення середовища, в якому світло поширюеться після проходження межі поділу.

Часто відношення $\frac{n_{2}}{n_{1}}$ називають відносним показником заломлення другого середовища відносно першого і по-

Мал. 4.7. Закон заломлення світла

Мал. 4.8. Xig світлового променя з воgи в повітря

значають n_{21}. Якщо взяти до уваги означення показника заломлення $n=\frac{c}{v}$, то можна прийти до висновку, що відносний показник заломлення характеризуе відношення швидкостей світла в середовищах, в яких воно поширюється:

$$
n_{21}=\frac{\sin \alpha}{\sin \gamma}=\frac{v_{1}}{v_{2}} .
$$

Таким чином, закон заломлення світла визначає значення кута заломлення, яке залежить від співвідношення швидкостей світла в кожному із середовищ. У цьому зв'язку не завжди кут заломлення буде меншим за кут падіння. Так, якщо світловий промінь виходить із середовища з більшим показником заломлення в середовище з меншим показником заломлення (наприклад, з води в повітря), то кут заломлення буде більшим за кут падіння (мал. 4.8).

Показник заломлення, визначений відносно вакууму, інколи називають абсолютним показником заломлення. Як правило, в таблицях вказують саме його, а відносні показники заломлення визначають експериментально або за формулою $n_{21}=\frac{\sin \alpha}{\sin \gamma}=\frac{v_{1}}{v_{2}}$.

Абсолютні показники заломлення речовин

Речовина	Показник заломлення	Речовина	Показник заломлення
Повітря	1,0003	Поліетилен	1,52
Вода	1,33	Алмаз	2,42
Скло (різне)	$1,52-1,89$	Кварц	1,46

1. Чому на межі двох середовищ відбувається заломлення світлового променя?
2. у чому полягає суть закону заломлення світла?
3. Який фізичний зміст мають абсолютний і відносний показники заломлення?

Вправа 28

1. Визначити показник заломлення скла, якщо швидкість світла в ньому дорівнюе $200000 \mathrm{~km} / \mathrm{c}$.
2. На поверхню рідини падае промінь під кутом 25°. Визначити кут заломлення променя, якщо швидқість світла в рідині дорівнюе $2,4 \cdot 10^{5} \mathrm{~km} / \mathrm{c}$.
www.testosvit.com
3. Показник заломлення речовини 1,63 . Який кут заломлення відповідає куту падіння променя 45° ?
4. Світловий промінь падае з повітря на поверхню рідини під кутом 45°, при цьому кут його заломлення дорівнюе 24°. Яким буде кут заломлення, якщо світло падатиме під кутом 80° ?

5*. Чому дорівнює кут падіння променя на поверхню кварцового скла, якщо кут між заломленим і відбитим променями становить 120° ?

6*. Чому дорівнюе швидкість світла в льодяній кризі, якщо кут падіння променя дорівнюе 61°, а кут заломлення 42° ?
7. Швидкість світла у склі становить 198200 км/с, у воді 225000 км/с. Визначити показник заломлення скла відносно води.

§ 56. Лінзи. Побуgова зображень, утворених за gопомогою лінз

Заломлення світла на межі двох середовищ зна-
йшло широке практичне втілення в оптичних пристроях, які називаються лінзами. Усі вони побудовані так, що можуть змінювати конфігурацію світлових пучків і напрям поширення світлових променів, зокрема збирати їх в точку (збиральні лінзи) або робити їх розбіжними (розсіювальні лінзи). Завдяки цьому можна отримати зображення предметів на екрані або в оці людини.

Для побудови зображень за допомогою лінз враховують характерні точки і лінії цих оптичних пристроїв, а також особливості проходження світлових променів крізь них. Пригадаемо ïх.

Пряму, що сполучає центри сферичних поверхонь, які обмежують лінзу, називають головною оптичною віссю лінзи. На ній знаходиться фокус лінзи, тобто точка, в якій сходяться світлові промені, паралельні головній оптичній осі, або продовження променів розбіжних пучків у розсіювальних лінз (мал. 4.9). Розсіювальні лінзи мають уявний фокус, тому

Мал. 4.9. Характерні точки і лінії лінз

www.testosvit.com

Мал. 4.10. Xig променів у збиральній лінзі вони не утворюють зображень на екрані. Одержане за їх допомогою зображення є результатом дії розбіжних променів від розсіювальної лінзи на кришталик ока, завдяки чому утворюється своєрідна оптична система, що створює зображення предмета в оці. Для спрощення міркувань надалі розглядатимемо лише збиральні лінзи.

Для побудови зображення будьякого предмета як правило користуються двома-трьома променями, що виходять з довільної точки тіла і прямують у певних характерних для лінзи напрямах. Один з таких променів напрямлений паралельно головній оптичній осі; після заломлення він перетинає вісь у фокусі лінзи (мал. 4.10). Другий промінь, який проходить через фокус, після заломлення в лінзі стає паралельним головній оптичній осі. Третім променем можна обрати той, що проходить через оптичний центр лінзи і не заломлюеться. Усі вони перетнуться в точці S^{\prime}, яка відтворює зображення обраної ділянки тіла.

Існують певні правила побудови зображень, одержаних за допомогою лінз, коли предмет займає різні положення відносно неї. Розглянемо їх докладніше на прикладі збиральної лінзи.

1. Предмет знаходиться між фокусом і подвійним фокусом лінзи (мал. 4.11). Спрямовуємо два характерні промені (один паралельний головній оптичній осі, другий - через фокус) й одержуємо зображення предмета, яке знаходиться праворуч від лінзи за подвійним фокусом. Воно е дійсним, оберненим і збільшеним.
2. Предмет знаходиться в подвійному фокусі лінзи (мал. 4.12). Спрямовуемо ті самі два характерні промені - паралельний головній оптичній осі та через фокус - й одержуємо зображення предмета праворуч від лінзи, симетрично до

Мал. 4.11. Побудова зображення, якщщо $F<d<2 F$

Мал. 4.12. Побуgова зображення, якщо $d=2 F$

неї, також у точці подвійного фокуса. Воно буде дійсним, оберненим і за розміром дорівнюватиме предмету.
3. Предмет знаходиться за подвійним фокусом лінзи (мал. 4.13). Спрямовуемо на лінзу два характерні промені, які перетинаються в точці, що знаходиться праворуч від лінзи між фокусом і подвійним фокусом. Зображення предмета буде дійсним, оберненим і зменшеним.
4. Предмет знаходиться перед фокусом лінзи (мал. 4.14). Спрямовуємо на лінзу два характерні промені - паралельний головній оптичній осі і через оптичний центр лінзи. Після заломлення в ній ці промені стають розбіжними. Тому продовжимо їх до перетину в точці, яка знаходиться з того самого боку від лінзи, що й предмет, - ліворуч. У такому разі одержимо зображення предмета, яке буде уявним, прямим і збільшеним.

Для того щоб розрахувати положення зображення предмета відносно лінзи, застосовують формулу лінзи, яка пов'язує між собою фокусну відстань лінзи F з положеннями предмета i його зображення відносно неї:

$$
\frac{1}{F}=\frac{1}{d}+\frac{1}{f},
$$

де d - відстань від предмета до лінзи; f - відстань від лінзи до зображення.

Пригадаемо також, що величину, обернену до фокусної відстані лінзи, називають оптичною силою лінзи: $D=\frac{1}{F}$. Вона вимірюеться в діоптріях (дптр).

1 діоптрія - це оптична сила лінзи, фокусна відстань якої дорівнює 1 m .

Задача. Знайти положення зображення предмета, яке дає збиральна лінза з фокусною відстанню 5 cm , якщо предмет знаходиться на відстані 3 см від лінзи.

Дано:
$F=5 \mathrm{~cm}$, $d=3 \mathrm{~cm}$.
$f-$?
Звідси $F=\frac{d f}{d+f}, f=\frac{F d}{d-F}$.
$f=\frac{5 \mathrm{~cm} \cdot 3 \mathrm{~cm}}{3 \mathrm{~cm}-5 \mathrm{~cm}}=-7,5 \mathrm{~cm}$. Знак означає, що зображення є уявним і знаходиться по той самий бік від лінзи, що й предмет.

1. Які види лінз бувають?
2. Які характерні лініі і точки використовують для побудови зображень, одержаних за допомогою лінз?
3. Яка властивість фокуса лінзи? У яких лінз він уявний?
4. Які зображення може давати збиральна лінза?

Вправа 29

1. Чому дорівнює фокусна відстань лінзи, якщо зображення предмета, розміщеного на відстані 25 см від лінзи, знаходиться на такій самій відстані?
2. На відстані 60 см від лінзи з фокусною відстанню 50 см розміщено предмет. Де буде знаходитися його зображення?
3. Предмет розміщено на відстані 80 cm від лінзи. Його зображення знаходиться на відстані 30 см від неї. Яка фокусна відстань лінзи?

4*. Відстань між предметом і екраном 90 cm . Де потрібно розмістити збиральну лінзу з фокусною відстанню 20 cm , щоб на екрані одержати чітке зображення предмета?

5*. Свічка розміщена на відстані 120 cm від екрана. Якщо між свічкою і екраном (ближче до свічки) помістити збиральну лінзу, то на екрані з'являється чітке збільшене зображення свічки. Якщо лінзу перемістити на 90 см ближче до екрана, то одержимо чітке зменшене зображення свічки. Знайти фокусну відстань лінзи.

§ 57. Інтерференція світла

Якщо спрямувати пучок світла на будь-яку поверхню, то ї освітленість збільшиться. Іншу картину можна спостерігати, якщо поверхню освітлювати двома пучками світла, які поширюються від одного джерела і накладаються www.testosvit.com

один на одний (мал. 4.15). У разі потрапляння їх на одну й ту саму ділянку поверхні спостерігається періодична зміна максимумів і мінімумів освітленості. Таку картину від двох щілин уперше спостерігав у 1801 p. англійський учений Т. Юнг, який дав пояснення цьому явищу на основі хвильової теорії світла.

Явище перерозподілу інтенсивності падаючого світла він назвав інтерференцією (від лат. - накладання). Воно є результатом взаємного підсилення чи ослаблення амплітуди двох чи більше електромагнітних хвиль, що поширюються в просторі від одного джерела. Iнтерференційну картину, одержану внаслідок накладання світлових хвиль, можна спостерігати лише за певних умов: електромагнітні хвилі повинні бути когерентними, тобто мати однакову частоту і різницю фаз. На практиці це забезпечується розщепленням світлового пучка від одного джерела світла на два і більше. Розглянемо це докладніше (мал. 4.16).

Згідно з принципом ГюйгенсаФренеля кожен світловий пучок від щілини є окремою електромагнітною хвилею, яка, потрапляючи на

Мал. 4.15. Інтерференція світла віg gвох щілин різного розміру

Мал. 4.16. Інтерференція світла віg gвох щілин екран, взаємодіє з іншою, когерентною їй хвилею. Якщо в певну точку екрана надходять дві хвилі в одній фазі, то їхня дія підсилюється й освітленість екрана в цій точці збільшується (максимуми інтерференційної картини). Якщо вони надходять у певну точку в протифазах, то їхні інтенсивності взаємно компенсуються (мінімуми інтерференційної картини).

Положення максимумів (світлих смуг) і мінімумів (темних смуг) в інтерференційній картині можна знайти, скориставшись формулами умов максимумів і мінімумів. Нехай у довільну точку A на екрані світло від когерентних джерел S_{1} і S_{2} надходить з певним зміщенням фаз, оскільки фронти хвиль

Мал. 4.17. Різниия хоgу світлових променів

проходять різні відстані (мал. 4.17). 3 малюнка видно, що $S_{1} A<S_{2} A$. Отже, у такому разі кажуть, що існуе різниця ходу світлових пучків, що дорівнює $\Delta l=S_{2} A-S_{1} A$. Якщо ця різниця ходу дорівнює парній кількості півхвиль, то в даній точці простору спостерігається максимум освітленості:

$$
\Delta l=2 k \frac{\lambda}{2},
$$

де λ - довжина хвилі; $k=1,2,3, \ldots n$.
Якщо у різницю ходу світлових пучків вкладається непарна кількість півхвиль, то в даній точці спостерігається мінімум освітленості:

$$
\Delta l=(2 k+1) \frac{\lambda}{2} .
$$

Явище інтерференції широко використовуеться в науці і техніці, зокрема, для проведення точних вимірювань відстаней за допомогою інтерферометрів (похибка менше ніж 100 нм). Так, американський фізик А. Майкельсон за допомогою сконструйованого ним інтерферометра з високою точністю виміряв швидкість світла у вакуумі, а в $1892-1893 \mathrm{pp}$. здійснив порівняння еталонного метра з довжиною хвилі видимого світла.

Метод просвітлення оптики вперше був запропонований українським фізиком О.Т. Смакулою (1900-1983).

Це явище знайшло практичну реалізацію в оптичних приладах, де слід у кілька разів зменшити інтенсивність проходження світла (так зване просвітлення оптики, яке широко використовується в окулярах). З цією метою поверхню лінзи вкривають тонкою прозорою плівкою. Проходячи крізь неї, світло двічі зазнае відбивання: спершу від верхньої поверхні плівки, вдруге - від нижньої. Відбиті пучки когерентні і мають певну різницю ходу, на значення якої впливае товщина плівки і матеріал, з якої вона виготовлена. Накладання цих двох відбитих пучків може викликати інтерференцію. Якщо різниця їх ходу дорівнюватиме непарній кількості півхвиль падаючого світла, то відбуватиметься зменшення інтенсивності відбитого світла. Повне "гасіння» відбитого світла певної довжини хвилі залежить від товщини плівки, і тому ї розраховують як правило для зеленого світла, до якого людське око найбільш чутливе.
www.testosvit.com

Лабораторна робота 1p 5

Спостереження інтерференції світла

Мета. Візуально спостерігати явище інтерференції за методом кілець Ньютона.

Обладнання. Скляна пластина, плоско-опукла лінза, джерело світла.

Теоретичні відомості

Інтерференційну картину можна спостерігати від двох когерентних джерел або на тонких плівках. Наприклад, якщо взяти плоску скляну пластинку і покласти на неї плоскоопуклу лінзу, яка має великий радіус обмежуючої сферичної поверхні (мал. 4.18), то можна спостерігати інтерференційну картину у вигляді кілець. Ïх називають кільцями Ньютона, на честь ученого, який вперше виконав цей дослід і спостерігав їх. Утворення кілець Ньютона $є$ проявом явища інтерференції в системі лінза-пластинка. Якщо пучок світла падає на плоску поверхню лінзи, то він частково проходить крізь неї, відбивається від нижньої поверхні лінзи та поверхні скляної пластинки. Унаслідок цього утворюються два когерентні пучки, які створюють стійку інтерференційну картину. Якщо паралельний пучок світла доволі широкий і падає на всю плоску поверхню лінзи, то в ній спостерігаються темні і світлі концентричні кільця. Відповідно до умови максимумів світлі смуги припадають на ті ділянки між лінзою і пластинкою, для яких різниця ходу між відбитими пучками дорівнюе парній кількості півхвиль:

$$
\Delta l=2 k \frac{\lambda}{2} .
$$

Так само темним смугам відповідають ділянки інтерференційної картини, де різниця ходу відбитих пучків дорівнює непарній кількості півхвиль:

$$
\Delta l=(2 k+1) \frac{\lambda}{2} .
$$

Експериментально встановлено, що радіуси кілець Ньютона залежать від довжини хвилі світла, що падае на дослідну установку (мал. 4.19). Тому за радіусом кілець Ньютона можна визначати

Мал. 4.18. Утворення кілець Ньютона

Мал. 4.19. Кільця Ньютона в червоному і зеленому світлі

довжину хвилі падаючого проміння, якщо відомий радіус лінзи.

Метод кілець Ньютона застосовують для високоточного контролю якості оброблюваних поверхонь. Для цього на контрольовану поверхню кладуть плоску пластину, якість якої відома. Якщо пластину освітлювати світлом певної довжини хвилі, то в тих місцях, де поверхні не стикаються, утворюються інтерференційні смуги. Розміри нерівностей можна визначити з точністю до півдовжини хвилі світла.

Виконання роботи

1. На скляну пластинку покласти плоско-опуклу лінзу.
2. Спрямувати паралельний пучок світла від джерела таким чином, щоб утворилися інтерференційні смуги у формі кілець.
3. Зобразити утворену картину в зошиті.
4. Зробити висновок.
5. У чому полягає суть явища інтерференції світла?
6. Яку інтерференційну картину ми спостерігаємо від двох щілин?
7. За яких умов може відбуватися інтерференція хвиль?
8. Коли ми спостерігаємо максимуми і мінімуми інтерференційної картини?
9. Де використовується явище інтерференції?
10. Чим пояснюється утворення кілець Ньютона?

§ 58. Дифракція світла

Як відомо, прямолінійність поширення* світла є одним з основних положень геометричної оптики, на якому 'рунтується побудова зображень в оптичних системах, утворення тіні і напівтіні, пояснення таких природних явищ, як сонячне і місячне затемнення. Якщо на шляху поширення світла помістити предмет, то на екрані за ним утвориться чітка тінь; якщо пучок світла спрямувати крізь отвір, на екрані спостерігатиметься чітка світла пляма. Тобто прямолінійність поширення світла підтверджується багатьма дослідами і нашим власним досвідом.

Якщо на шляху світла трапляються невеликі за розмірами предмети чи отвори, чіткість зображення тіні чи світної плями втрачається і їхні краї стають розмитими. Якщо перешкоди будуть за розмірами сумірні з довжиною хвилі падаючого світла (у кілька десятих часток міліметра і менше), то на екрані буде спостерігатися зовсім інша картина: світло проникатиме в зону тіні, порушуючи тим самим основи геометричної оптики. Тобто там, де має бути темна тінь,

Мал. 4.20. Дифракція світла ($\lambda=650$ нм) sig отвору gіаметром $0,2 \mathrm{~mm}$ з'являються світлі полоси, а в центрі світлої плями може бути темна зона (мал. 4.20).

Явище потрапляння світла в зону геометричної тіні, ніби світло огинає перешкоду, називається дифракцією.

Уперше дифракцію світла спостерігав Т. Юнг. Пояснив це явище на основі хвильової теорії світла Ж.О. Френель.

Нехай на щілину падає сферична хвиля від точкового джерела світла. Відповідно до принципу Гюйгенса-Френеля ї краї стануть джерелами нових хвиль, які поширюватимуться, потрапляючи в зону геометричної тіні (мал. 4.21). Ці хвилі є когерентними, і тому внаслідок накладання утворюють інтерференційну картину з максимумами і мінімумами освітленості. Оскільки вона є відображенням явища дифракції світла, ї називають дифракційною картиною.

Дифракція властива всім хвильовим процесам, тому вона має місце для різних видів електромагнітних випромінень у всьому діапа-- зоні електромагнітних хвиль. Крім того, це явище спостерігається в електронів при розсіюванні їх під час проходження крізь кристалічні тіла. Цим фактично підтверджується, що вони мають також хвильові властивості, тобто мікрочастинкам, як і світлу, притаманний корпус-кулярно-хвильовий дуалізм. Кор-пускулярно-хвильовий дуалізм для

Мал. 4.21. Пояснення gифракції на основі принципа Гюйгенса-Френеля мікрочастинок відображається так званою хвилею де Бройля, яка їм притаманна (див. § 61).

Лабораторна робота N $^{p} 6$

Спостереження дифракції світла

Мета. Візуально спостерігати явище дифракції від вузької щілини, маленького отвору чи дифракційної г'ратки.

Обладнання. Чорний папір, тонке лезо, голка, пташине пір'я, дифракційна Іратка, джерело світла.

Теоретичнi вiдомостi

Дифракційну картину можна спостерігати від тонкої щілини або маленького отвору в чорному папері, а також за допомогою пристрою, який називається дифракційною 'раткою. Дифракційна ѓратка - це послідовність однакових завширшки щілин, зроблених на однакових відстанях одна від одної. Іैхня кількість в одному міліметрі називається періодом гратки. Якщо крізь таку 'ратку подивитися на точкове джерело світла, то його зображення «розщепиться» на кілька світних точок, які визначаються максимумами дифракційної картини: $d \sin \alpha=k \lambda$, де d - період гратки; $\alpha-$ кут, під яким спостерігається максимум; k - його порядковий номер; λ - довжина хвилі.

Виконання роботи

1. За допомогою тонкого леза або голки зробити в чорному папері щілину чи отвір.
2. Подивитися крізь нього або пташине пір'я на точкове джерело світла.
3. Зобразити одержану картину.
4. За наявності дифракційної гратки подивитися крізь неї на точкове джерело світла.
5. Зобразити зображення, звернувши увагу на їхній спектр кольорів.
6. Зробити висновок.
7. у чому полягає суть дифракції? Яке з положень геометричної оптики воно порушує?
8. За яких умов спостерігається дифракція?
9. Чому інколи дифракцію вважають частинним випадком інтерференціі?
10. Які конструктивні особливості дифракційної ґратки?

Вправа 30

1. В одну й ту саму точку екрана надходять два когерентні пучки білого світла з різницею ходу 3 мкм. Які хвилі видимого світла в цій точці максимально підсилюватимуться, а які максимально послаблятимуться?
www.testosvit.com
2. Від двох когерентних джерел, відстань між якими 120 мкм, на екран потрапляють світлові пучки з довжиною хвилі 480 нм, утворюючи інтерференційну картину. Визначити відстань між центрами двох розміщених поряд темних смуг на екрані, якщо відстань від джерела світла до екрана $3,6 \mathrm{~m}$.
3. Дві вузькі щілини, відстань між якими 0,32 мм, освітлено білим світлом. Екран, на якому відображена інтерференційна картина, знаходиться на відстані 3,2 м від них. Визначити відстань між червоною (760 нм) та фіолетовою (400 нм) лініями другого порядку інтерференційної картини на екрані.
4. Крізь дифракційну гратку проходить світло з довжиною хвилі 480 нм. Максимум першого порядку утворився на відстані 2,39 см від центральної смуги. Визначити період дифракційної г'ратки, якщо відстань від неї до екрана 1,2 м.

§ 59. Дисперсія світла. Спектроскоп

I. Ньютон, спостерігаючи в 1672 р. проходження сонячного світла крізь призму, встановив, що воно розкладаеться на кольори (мал. 4.22). Це явище було названо дисперсією світла. Сутність його полягає в тому, що швидкість поширення світлових хвиль різної частоти в прозорому оптичному середовищі, за винятком вакууму, неоднакова*: в оптичному середовищі вона тим більша, чим менша частота світлової хвилі (більша довжина хвилі). Тобто в одному й тому самому середовищі червоне світло ($\lambda=620 \div 760$ нм) має більшу швидкість, ніж фіолетове ($\lambda=380 \div 450$ нм).

Відповідно, узявши до уваги формулу показника заломлення середовища $n=\frac{c}{v}$, можна зробити висновок, що його значення залежить від швидкості поширення світла в оптичному середовищі, отже, й від довжини світлової хвилі: як правило, він більший у світла з меншою довжиною хвилі. Отже, дисперсія - це фактично залежність абсолютного показника заломлення середовища від довжини хвилі світла: $n=f(\lambda)$. Тому при

Мал. 4.22. Дисперсія світла (goсліg l. Ньютона)

[^5]

Мал. 4.23. Залежність показника заломлення речовин вія gовжини хвилі

проходженні сонячного проміння крізь призму воно розкладаеться в спектр, в якому промені фіолетового кольору, що мають меншу швидкість, відхиляються найбільше, а червоного кольору - найменше. У лабораторних умовах це можна спостерігати, якщо крізь призму почергово пропускати проміння, наприклад червоного і фіолетового кольору - останнє буде заломлюватися більше.

Графічну залежність показника заломлення від довжини хвилі для деяких речовин наведено на малюнку 4.23. Як видно з графіка, вона має нелінійний характер. Наприклад, в одного із сортів скла показник заломлення для променів фіолетового кольору дорівнює 1,532 , для зеленого - 1,519 , а в червоного - 1,513. Отже, при проходженні крізь призму природного сонячного світла, у складі якого є проміння різної довжини хвилі, внаслідок дисперсії вони заломлюються під різними кутами, утворюючи різнобарвний суцільний спектр. У ньому присутні всі кольори від червоного до фіолетового, які плавно переходять від одного до іншого. Його можна спостерігати в природі у вигляді яскравої веселки.

Мал. 4.24. Буgова спектроскопа www.testosvit.com

За складом спектра можна судити про властивості речовини і відрізняти її від інших, оскільки кожна речовина має особливий, притаманний лише їй спектр. 3 метою дослідження властивостей речовин використовують спектроскопи i спектрометри, за допомогою яких вивчають спектри різних речовин. Основною частиною такого оптичного приладу ϵ дисперсійна призма (мал. 4.24), за допомогою якої вузький пучок світла від досліджуваного тіла розкладається в спектр, що

Мал. 4.25. Сучасний спектрометр фіксується візуально чи на фотоплівку (спектроскоп) або завдяки сучасним детекторам випромінювання (спектрометр).

Порівнюючи одержаний спектр досліджуваного тіла зі спектрами інших речовин, можна з'ясувати його хімічний склад або зробити інші висновки щодо його якісного складу. Зокрема, сучасні спектрометри (мал. 4.25) використовують в різноманітних наукових дослідженнях хімічного складу зразків, для визначення хімічного складу астрономічних об'єктів, в екологічних експертизах з метою визначення забруднення харчових продуктів і грунтів, у контролі якості сировини в металургії та хімічній промисловості, для аналізу художніх творів на їх відповідність оригіналу тощо.

1. Чому сонячне світло розкладається в спектр? Як називається це явище?
2. Яким чином показник заломлення середовища залежить від довжини хвилі світла?
3. В основу дії яких оптичних приладів покладено явище дислерciï? Що є їх основним конструктивним елементом?
4. Де застосовують спектроскопи і спектрометри?

§ 60. Інфрачервоне та ультрафіолетове випромінення

Спектр видимого світла з одного боку обмежений фіолетовим світлом, а з іншого - червоним. За їхніми межами око не бачить жодного з випромінень. Проте за допомогою спеціальних приладів, чутливих до певного діапазону хвиль, встановлено, що в крайніх темних ділянках спектра також існує випромінення. Якщо в темну частинку екрана за червоною ді-

лянкою спектра внести термодатчик, то прилад, з'єднаний з ним, зафіксуе нагрівання. Це свідчить про те, що в цій ділянці спектра існує енергія електромагнітного випромінення, яке не фіксує око. Вимірювання показують, що довжина хвилі цього випромінення більша за довжину хвилі червоного світла видимої ділянки спектра. Тому воно дістало назву інфрачервоного. Межі діапазону інфрачервоних хвиль від 760 нм до $\mathbf{0 , 1} \mathbf{~ м м . ~}$

Межі діапазону інфрачервоних хвиль від $\mathbf{7 6 0}$ нм до $\mathbf{0 , 1} \mathbf{~ м м . ~}$

Відкрив інфрачервоне випромінення відомий англійський астроном і оптик В. Гершель у 1800 р.

Інфрачервоні хвилі випромінюють усі нагріті тіла, незалежно від їхньої температури. При цьому слід ураховувати, що довжина хвилі, на яку припадає максимальна енергія випромінювання, зменшується з підвищенням температури тіла. Цей вид випромінення часто називають тепловим, оскільки завдяки інфрачервоному випроміненню здійснюеться один з видів теплопередачі. Наприклад, таким чином передається на Землю теплова складова сонячної енергії.

Поширенням інфрачервоних променів, як і будь-якого іншого випромінення, можна керувати, використовуючи їх взаемодію з речовиною. Для цього добирають речовини, які мало поглинають інфрачервоні промені. Серед них такі речовини, як кам'яна сіль та ебоніт. Так, у техніці застосовують різні пристрої, дія яких грунтуеться на використанні енергії інфрачервоних променів. Це різні сушарки, що використовуються при фарбуванні автомобілів чи зневодненні вологого дерева тощо.

Інфрачервоне випромінення слабко поглинається повітрям, але добре відбивається від поверхні твердих тіл. Цю властивість використано в системах так званого нічного бачення, які широко застосовують у військовій справі та наукових дослідженнях. У таких системах приймач фіксує хвилі, що випромінює кожне тіло в інфрачервоному діапазоні, або хвилі, відбиті від предметів, освітлених *інфрачервоними» прожекторами. Складні електронні системи перетворюють одержану інформацію на зображення предметів, видимих для ока людини.

3 протилежного краю видимого світла, що прилягає до фіолетового проміння, існує діапазон ультрафіолетового випромінення, яке також має особливі властивості.

Так, багато речовин випромінюють видиме світло, якщо на них потрапляє ультрафіолетове випромінення. Це явище поwww.testosvit.com

кладене в основу методів виявлення ультрафіолетового випромінення, а також неруйнівного аналізу різних речовин. Зокрема, за кольором світіння продуктів харчування, на які спрямовано ультрафіолетові промені, визначають їхню харчову якість; за кольором світіння мінералів геологи встановлюють їхній хімічний склад. Відомий також метод виявлення фальшивих грошових купюр, який застосовують у банківських установах.

Ультрафіолетове випромінення має сильну бактерицидну дію. Під його впливом гине більшість хвороботворних бактерій. Тому в усіх операційних кімнатах лікарень є спеціальні електричні лампи, які випромінюють ультрафіолетові промені і дезінфікують приміщення. Так само ультрафіолетове випромінення застосовують для стерилізації різних медичних матеріалів та інструментів, дезінфекції питної води.

Під дією ультрафіолетових променів в організмі людини виробляються речовини (наприклад, вітамін D), які сприяють зміцненню здоров'я людини. Тому малі дози цього випромінення використовують для оздоровлення людей у медичних установах і санаторіях, зокрема процедури засмагання під дією сонячного світла, в якому є значна частка ультрафіолетового випромінення.

Водночас ультрафіолетове випромінення (особливо у короткохвильовій ділянці) може бути шкідливим для здоров'я людини. Воно здатне негативно впливати на сітківку ока, спричиняти опіки шкіри, призводить до незворотних змін в організмі, що провокують розвиток різних хвороб, наприклад рак шкіри.

Різні речовини по-різному взаємодіють з ультрафіолетовим випроміненням, пропускаючи або поглинаючи його. Так, звичайне віконне скло поглинає майже всі хвилі ультрафіолетового діапазону, а скло, виготовлене з кварцового піску, пропускає їх практично без змін.

Ультрафіолетове випромінення можна одержати за допомогою штучних джерел: так званих ламп чорного світла, лазерів.

1. Які основні властивості інфрачервоних променів?
2. Що $є$ джерелом інфрачервоного випромінення?
3. Яке практичне застосування інфрачервоного випромінення?
4. Який вид випромінення називають ультрафіолетовим?
5. Які основні властивості ультрафіолетового випромінення?
6. Де застосовують ультрафіолетове випромінення?

§ 61. Квантові властивості світла. ФотOH

У різні часи, пояснюючи природу світла, учені дотримувалися різних поглядів. Одні вважали світло електромагнітною хвилею і обгрунтовано доводили це, посилаючись на явища інтерференції, дифракції і поляризації світла. Інші, прихильники корпускулярної теоріі, уявляли світло як потік частинок і також мали вагомі аргументи на підтвердження цього. Так, на підставі корпускулярних уявлень I. Ньютон пояснював прямолінійне поширення і дисперсію світла.

Разом з тим на кінець XIX ст. завдяки дослідженням Т. Юнга і О.Ж. Френеля, а також поясненню природи світла за допомогою електромагнітної теорії Дж. Максвелла у фізиці склалося переконання, що хвильова теорія спроможна пояснити будь-яке світлове явище. Тому коли А. Ейнштейн поширив ідею квантування енергії, висловлену М. Планком стосовно теплового випромінення, на світлові явища, це було сприйнято неоднозначно.

Гіпотеза М. Планка: теплове випромінення здійснюеться певними мінімальними порціями енергії - квантами, пропорційними частоті випромінювання v. Квант енергї $\varepsilon=h v$, де \boldsymbol{h} - це стала Планка.
На той час обмежений характер хвильової теорії світла підтверджували також досліди Г. Герца і результати вивчення явища фотоефекту А.Г. Столєтовим. Пізніше, у 1922 р., квантова природа світлового випромінення була експериментально доведена А. Комптоном під час спостереження розсіювання рентгенівських променів у речовині.

> Гіпотезу про подвійну природу світла - корпускулярно-хвильовий дуалізм - уперше висловив А. Ейнштейн.

Таким чином, численні дослідження світлових явищ демонструють неоднозначний прояв властивостей світла: в одних випадках вони свідчать на користь хвильової природи світла, в інших - виразніше проявляеться його корпускулярна природа. Отже, світлу властивий корпускулярно-хвильовий дуалізм - воно має як неперервні, хвильові властивості, так і дискретні, корпускулярні.

Загалом корпускулярно-хвильовий дуалізм властивий не лише світлу, а всім мікрочастинкам. Так, потік електронів, що падае на кристал, утворюе дифракційну картину, яка може бути пояснена лише на основі хвильових уявлень. Тобто

електрони, які е елементарними частинками, корпускулами, виявляють за певних умов хвильові властивості. Такі уявлення про матерію покладено в основу квантової теоріі. Вона, зокрема, передбачае, що кожній мікрочастинці, яка рухаеться, відповідае хвиля де Бройля $\lambda=\frac{h}{p}$, де p-імпульс тіла, h - стала Планка.

Довжина хвилі де Бройля електрона, що рухаеться зі швидкістю $500 \mathrm{~m} / \mathrm{c}$, дорівнюе

$$
\lambda=1,5 \cdot 10^{-6} \mathrm{~m}=1,5 \mathrm{mkм} .
$$

Корпускулярну природу світла в сучасній фізиці відтворює поняття світлового кванту, зміст якого́ окреслив А. Ейнштейн, поширюючи гіпотезу Планка на світлове випромінення. За його тлумаченням світловий квант - це мінімальна порція світлової енергії, локалізована в частинці, яка називається фотоном. Таким чином, світло з точки зору квантової теорії - це потік фотонів, що рухаються зі швидкістю світла ($c=3 \cdot 10^{8} \mathrm{~m} / \mathrm{c}$).

Фотон - це елементарна частинка, що характеризує квант cвітла $\boldsymbol{h} \boldsymbol{v}$.

Фотону як кванту випромінювання, за гіпотезою Планка, відповідає енергія $\varepsilon=h v$. Як елементарна частинка він має імпульс $p=m c$. З урахуванням формули взаємозв'язку маси та енергії $\varepsilon=m c^{2}$ його імпульс дорівнює:

$$
p=\frac{\varepsilon}{c}=\frac{h \nu}{c}=\frac{h}{\lambda},
$$

де λ - довжина світлової хвилі.
Ця формула відображає наявність у світла одночасно і хвильових, і корпускулярних властивостей. Адже імпульс фотона як кінематичний параметр мікрочастинки речовини виражається через частоту або довжину хвилі, тобто величини, властиві випромінюванню.

Фотон - це особлива елементарна частинка. Він не мае маси спокою ($m_{0}=0$), тобто його не можна спинити. Дійсно, якщо була б така система відліку, в якій би він не рухався, то в такій системі втрачає сенс саме поняття світла, адже не відбувається його поширення.

Маса фотона залежить від частоти (довжини хвилі) електромагнітного випромінення, адже $m=\frac{h v}{c^{2}}$. Так, для видимого

світла (наприклад, $\lambda_{\mathrm{c}}=6 \cdot 10^{-7} \mathrm{~m}$) його маса дорівнюе $3,7 \cdot 10^{-36} \mathrm{\kappa г}$, а для рентгенівського випромінення $\left(\lambda_{\mathrm{p}}=10^{-9} \mathrm{~m}\right)-2,2 \cdot 10^{-33} \mathrm{kr}$.

Маса фотона рентгенівського випромінення менша за масу електрона ($m_{0}=9,1 \cdot 10^{-31} \mathrm{kr}$) майже в 500 разів.

Квантові уявлення про природу світла дають змогу пояснити ряд явищ, де хвильова теорія виявляється безпорадною. Зокрема, це стосуеться фотоефекту, люмінесценції, фотохімічних реакцій, розсіяного рентгенівського випромінення в речовині тощо. Зокрема, оскільки квантова теорія розглядає світло як потік фотонів, то згідно із законами механіки при зіткненні вони повинні передавати імпульс тілу, на яке потрапляють. Це означає, що світло має здійснювати тиск на поверхню, на яку воно падає. Цей висновок експериментально підтвердив у 1899 р. російський учений П.М. Лебедєв.

1. Які два вчення про природу світла існують у фізиці? Які світлові явища підтверджують іх?
2. У чому полягає суть піпотези Планка?
3. Що таке корпускулярно-хвильовий дуалізм світла?
4. У чому полягає суть квантування електромагнітного випромінення?
5. Схарактеризуйте фотон як елементарну частинку.

§ 62. Фотоефект. Рівняння фотоефекту

У 1887 р. Г. Герц спостерігав явище, яке згодом дало поштовх розвитку квантових уявлень про природу світла. При опроміненні негативно заряджених тіл ультрафіолетовим випроміненням вони швидше втрачали свій електричний заряд, ніж за відсутності такого опромінення. Як з'ясувалося пізніше, це було проявом явища, яке назвали фотоефектом. Фотоефект - це явице виходу електронів з тіла під дією електромагнітного випромінення. У фізиці розрізняють кілька видів фотоефекту. У випадку, коли електрони вилітають з тіла у вакуум або інше середовище, це називають зовнішнім фотоефектом, або фотоелектронною емісією.

Якщо розглянути зовнішній фотоефект з точки зору фізичних процесів, що відбуваються під час його прояву, то це яви-

У 1888 р. німецький фізик В. Гальвакс установив, що під дією світла металева пластинка заряржається позитивно.

ще можна уявити як результат трьох процесів: поглинання фотона, внаслідок чого енергія одного з електронів стає більшою за середню; рух цього електрона до поверхні тіла; вихід його за межі тіла в інше середовище через поверхню розділу.

У 1888-1889 pp. явище фотоефекту докладно вивчав російський учений О.Г. Столєтов (1839-1896). у своїх дослідах він використав конденсатор, одна з пластин якого C була сітчастою, і увімкнув його в

Мал. 4.26. Схема gocrigy О.Г.Столетова електричне коло з гальванометром (мал. 4.26). Коли на негативно заряджену цинкову пластину P падали ультрафіолетові промені, у колі виникав струм, який фіксував гальванометр. За допомогою потенціометра R можна змінювати напругу на конденсаторі. Якщо джерело струму E увімкнути інакше (пластину P приєднати до позитивного полюса), то струм у колі не спостерігатиметься.

Фотоелектрони - це електрони, вибиті з поверхні тіла внаслідок фотоефекту.

Вивчаючи за допомогою такої установки залежність сили струму від частоти світла, його інтенсивності, інших характеристик випромінювання, О.Г. Столетов установив закономірності перебігу цього явища, які згодом назвали законами фотоефекту:

1) кількість електронів, що вилітає з поверхні тіла під дією електромагнітного випромінення, пропориійна його інтенсивності;
2) для кожної речовини залежно від ї температури i стану поверхні існує мінімальна частота світла v_{0}, за якої ще можливий зовнішній фотоефект;
3) максимальна кінетична енергія фотоелектронів залежить від частоти світла, яким опромінюють пластину, і не залежить від його інтенсивності.

Мінімальна частота v_{0} (або максимальна довжина хвилі λ_{0}) випромінення, яке ще викликає зовнішній фотоефект, називається червоною межею фотоефекту.

Межа фотоефекту називається «червоною» тому, що при зміщенні довжини хвилі у бік червоного світла ($\lambda>\lambda_{0}$) фотоефект не відбувається.

При спробі пояснити ці закони з позицій хвильової теорії у вчених виникли утруднення, викликані протиріччям між ї положеннями і отриманими результатами. Це змусило їх інакше витлумачити механізм поглинання світлового випромінення.

3 цією метою А. Ейнштейн використав квантові уявлення про природу світла, згідно з якими він пояснив поглинання світла як явище, в результаті якого фотон віддає середовищу всю свою енергію. Як відомо, для того щоб електрон покинув тверде тіло або рідину, йому необхідно подолати енергію взаемодії з атомами і молекулами, які утримують його всередині тіла, тобто виконати роботу виходу A_{0}. Фізичний зміст роботи виходу полягає в тому, що це мінімальна енергія, необхідна для виходу електрона з тіла у вакуум чи середовище.

Робота виходу, крім хімічної природи речовини, з якої виготовлено тіло, також залежить від стану його поверхні.

Таким чином, можна зробити висновок, що фотоефект може відбутися лише за умови, що фотон матиме енергію більшу або яка дорівнюватиме роботі виходу (hv $\geq A_{0}$). Якщо ж ця умова не виконується, тобто $h v<A_{0}$, то фотоефект неможливий.

За пояснення законів фотоефекту А. Ейнштейн у 1922 р. одержав Нобелівсыку премію.

У випадку, коли енергія фотона, передана електрону внаслідок поглинання світла, більша за роботу виходу, то електрон додатково набуває ще й кінетичної енергії. Отже, за законом збереження енергії:

$$
h v=A_{0}+\frac{m v^{2}}{2}
$$

Це співвідношення називається рівнянням Ейнштейна для фотоефекту.

На основі цього рівняння можуть бути пояснені всі три закони фотоефекту. Дійсно, інтенсивність монохроматичного випромінення пропорційна кількості фотонів, що падає на поверхню за 1 с: $I \sim N_{\phi}$. У свою чергу від кількості фотонів залежить кількість вибитих із поверхні тіла електронів N_{e}. Отже, $N_{\mathrm{e}} \sim I$.

За граничних умов червоної межі фотоефекту v_{0} кінетична енергія електрона дорівнюе нулю. Тому червона межа фотоефекту визначається лише роботою виходу і залежить від хімічної природи металу, наявності домішок і стану його поверхні:

$$
\begin{aligned}
& h v_{0}=A_{0}, v_{0}=\frac{A_{0}}{h} \text {, або } \lambda_{0}=\frac{h c}{A_{0}} . \\
& \quad \text { www.testosvit.com }
\end{aligned}
$$

1. У чому полягає суть явища фотоефекту?
2. Які фізичні процеси відображають явище фотоефекту? На яке інше явище воно схоже?
3. Чому явище фотоефекту спостерігається лише при певному підключенні джерела струму?
4. Поясніть суть кожного із законів фотоефекту?
5. За яких умов може відбуватися фотоефект?
6. Чому червона межа фотоефекту залежить від хімічної природи металу? Що ще впливає на ї значення?

§ 63. Застосування фотоефекту. Приклаgu розв'язування заgач

Різні прояви явища фотоефекту знайшли широке практичне застосування в науці і техніці. Зокрема, у напівпровідників був виявлений також внутрішній фотоефект, який проявляється у зростанні електропровідності (так звана фотопровідність) та виникненні EPC (так звана фотоЕPC) під час їх опромінення.

Фотопровідність зумовлена головним чином зростанням концентрації рухомих носіїв заряду (електронів і дірок) у напівпровідниках під дією електромагнітного випромінення. Фотон, поглинаючись напівпровідником, віддає всю свою енергію електронам, які завдяки цьому можуть стати вільними, збільшивши число електронів провідності і дірок (так звана власна фотопровідність). Таким чином, фотопровідність напівпровідників зростає пропорційно до інтенсивності опромінення - чим вона більша, тим більший електричний струм. Вона також залежить від частоти випромінювання, проте характер цього зв'язку складніший. Ці властивості напівпровідників використовуються в фоторезисторах і фотодіодах.

Фоторезистор - це напівпровідниковий прилад (мал. 4.27), опір якого змінюеться залежно від його освітленості: чим більша сила світла, що на нього падає, тим менший його опір. Адже під дією світла у напівпровіднику утворюються додаткові носії електричного заряду - пара «електрон-

Мал. 4.27. Фоторезистор

Мал. 4.28. Фотоgiog дірка*, які підсилюють провідність матеріалу, отже, зменшують його опір.

У напівпровідникових фотодіодах (мал. 4.28), які увімкнені в коло в запірному напрямі p-n-переходу, під дією світла виникає одностороння провідність. Це пояснюеться тим, що внаслідок опромінення в них зростає концентрація електронів і дірок. Під дією електричного поля неосновні носії заряду (електрони в напівпровіднику p-типу і дірки в напівпровіднику n-типу) легко долають запірний шар p-n-переходу і в колі виникає струм.

Фоторезистори і фотодіоди широко використовують у засобах автоматики, де необхідно враховувати зміну світлового потоку, наприклад в охоронних системах, пропускних турнікетах метрополітену, пристроях відтворення звуку тощо.

Під дією світла в напівпровідниках може виникати фотоEPC, яка зумовлена просторовим розподілом носіїв заряду, що виникають у напівпровіднику внаслідок нерівномірного поглинання випромінення (мал. 4.29). Концентрація носіїв заряду поблизу грані 1 , що освітлюеться, набагато вища, ніж у протилежної, затемненої грані 2. Електрони і дірки дифундують від грані 1 до грані 2 , проте через неоднакову їх рухливість в об'ємі напівпровідника відбуватиметься перерозподіл заряду, який створюватиме електричне поле E. Наявність електричного поля підтримуватиме різницю потенціалів, завдяки якій існуватиме фотоЕРC.

Утворення фотоЕРС використовується в різних датчиках, призначених для вимірювання потужності випромінювання, сонячних батареях, які застосовуються в космічній техніці тощо.

Під дією електромагнітного випромінення можуть відбуватися процеси, які викликатимуть зміни властивостей речовин. Наприклад, багато органічних і неорганічних речовин при освітленні змінюють свій колір, виявляючи фотохромізм. Це пояс-

Мал. 429. Виникнення фотоЕРС нюється тим, що поглинаючи квант світла, речовина переходить у новий стан, який характеризується іншим спектром поглинання або перебудовою валентних зв'язків під час фотодисоціації чи фотохімічної реакції.

Властивість речовин реагувати на опромінення світлом покладена в основу виготовлення фотохромних матеріалів, які застосовуються для реєстрації зображень, запису й www.testosvit.com

обробки оптичних сигналів. Останнім часом широкого поширення набули полімерні матеріали і фотохромні світлочутливі плівки, що містять галогеніди срібла ($\mathrm{AgBr}, \mathrm{AgCl}$), лужногалоїдні сполуки ($\mathrm{KCl}, \mathrm{NaF}$). Зокрема, їх використовують в елементах оперативної пам'яті EOM, кольоровому друці і фотографії, запису інформації на оптичних дисках тощо.

Задача 1. Чи відбудеться фотоефект при опроміненні цинкової пластини ультрафіолетовим світлом довжиною хвилі 200 нм? Яку максимальну швидкість можуть мати фотоелектрони при цьому? Робота виходу електрона для цинку дорівнює $6,8 \cdot 10^{-19}$ Дж*.

Дано:

Розв'язання

$A_{0}=6,8 \cdot 10^{-19}$ Дж, $\lambda=200$ нм .

Фотоефект можливий, якщо $\frac{h c}{\lambda} \geq A_{0}$.

$$
v_{\max }-?
$$

$$
\begin{aligned}
\frac{h c}{\lambda} & =9,9 \cdot 10^{-19} \text { Дж; } \\
A_{0} & =6,8 \cdot 10^{-19} \text { Дж. }
\end{aligned}
$$

Отже, фотоефект відбудеться.
З рівняння Ейнштейна: $\frac{m v_{\max }^{2}}{2}=\frac{h c}{\lambda}-A_{0}$.
Звідси $v_{\max }=0,8 \cdot 10^{6} \mathrm{~m} / \mathrm{c}$.
Задача 2. У якого металу - цезію чи вольфраму - червона межа фотоефекту вища? Робота виходу цих металів дорівнює відповідно 1,8 та 4,54 еB.

Дано:
$A_{0}(\mathrm{Cs})=1,8 \mathrm{eB}$,
$A_{0}(\mathrm{~W})=4,54 \mathrm{eB}$.
$v_{0}(\mathrm{Cs})>\mathrm{v}_{0}(\mathrm{~W})-$?

> Розв'язання

За означенням $v_{0}=\frac{A_{0}}{h}$.

$$
v_{0}(C s)=0,43 \cdot 10^{15} \Gamma ц ;
$$

$$
v_{0}(W)=1,1 \cdot 10^{15} \Gamma ц .
$$

Отже, $\mathrm{v}_{0}(\mathrm{Cs})<\mathrm{v}_{0}(\mathrm{~W})$.
Узявши до уваги, що $\lambda=\frac{c}{v}$, одержимо: $\lambda_{0}(\mathrm{Cs})=7 \cdot 10^{-7} \mathrm{M}$, $\lambda_{0}(\mathrm{~W})=2,7 \cdot 10^{-7} \mathrm{~m}$. Тобто червона межа цезію лежить у видимій частині спектра світла, а у вольфраму вона - за його межами.

[^6]1. Які прилади побудовані на використанні явища фотоефекту?
2. Що таке фотопровідність? Від чого вона залежить?
3. Поясніть дію фоторезистора або фотодіода як засобів автоматики.
4. Де застосовують фотодіоди і фоторезистори?
5. У чому проявляеться хімічна дія світла? Чим це зумовлено?

Вправа 31

1. Яку енергію та імпульс мають фотони видимої частини спектра у найкоротших ($\lambda=400$ нм) і найдовших ($\lambda=760$ нм) світлових хвиль? Чому дорівнюе їхня маса?
2. Яку довжину хвилі, масу та імпульс має фотон енергією 1 MeB ?
3. Яку швидкість має електрон, кінетична енергія якого дорівнює енергії фотона довжиною хвилі 600 нм?
4. Людське око має найвищу чутливість до зеленого світла ($\lambda=550$ нм). Воно починає реагувати на нього при потужності світлового потоку $2 \cdot 10^{-17} \mathrm{~B}$. Скільки фотонів за 1 с потрапляє при цьому на сітківку ока?
5. Яку кінетичну енергію і швидкість матимуть фотоелектрони, що вилітають із поверхні оксиду барію ($A_{0}=1,2 \mathrm{eB}$), якщо ї опромінювати зеленим світлом довжиною хвилі 550 нм?
6. Робота виходу електрона з цезію дорівнює 1,9 еВ. Обчислити червону межу фотоефекту для цезію. Якому кольору видимого світла вона відповідає?
7. Обчислити роботу виходу електронів для срібла в джоулях і електрон-вольтах, якщо його червона межа фотоефекту становить 260 нм.
8. Чи відбуватиметься фотоефект, якщо поверхню ртуті опромінювати світлом видимого діапазону випромінення? Poбота виходу електронів із ртуті дорівнює $4,53 \mathrm{eB}$.
9. Яку запірну напругу треба подати, щоб струм у колі припинився, якщо на вольфрамовий катод падає випромінення довжиною хвилі 0,1 мкм?

Головне в розgiлi 4

1. Світло - це електромагнітне випромінення певного діапазону хвиль (від 380 до 760 нм). Йому властивий корпус-кулярно-хвильовий дуалізм - воно має як безперервні, хвильові властивості, так і дискретні, корпускулярні. Тобто в одних випадках (інтерференція, дифракція, поляризація) світло виявляе хвильову природу, в інших (поглинання, фотоефект) - виразніше проявляеться його корпускулярна природа.
2. Світло, поширюючись у середовищі, взаємодіє з ним, внаслідок чого відбувається поглинання, розсіювання чи відбивання світла. Усі ці явища є результатом взаємодії електромагнітного випромінення з речовиною. Так, з точки зору квантових уявлень поглинання світла - це процес захоплення фотонів атомами речовини, внаслідок якого вони віддають їм свою енергію.
3. Під час дзеркального відбивання світла справджуеться закон відбивання світла: падаючий i відбитий промені лежать в одній площині з перпендикуллром до відбиваючої поверхні в точці падіння світлового променя; перпендикуляр ділить кут між падаючим і відбитим променями на дві рівні частини.
4. При поширенні світла з одного середовища в інше справджується закон заломлення світла: падаючий i заломлений промені лежать в одній площині з перпендикуляром до межі двох середовищ в точці падіння променя; кут падіння а світлового променя на поверхню межі поділу двох середовищ, пов'язаний з кутом заломлення γ співвідношенням:

$$
n_{1} \sin \alpha=n_{2} \sin \gamma, \text { або } n_{21}=\frac{\sin \alpha}{\sin \gamma} \text {. }
$$

5. Заломлення світла на межі двох середовищ знайшло втілення в лінзах, які змінюють конфігурацію світлових пучків і напрям поширення світлових променів, зокрема збирають їх у точку (збиральні лінзи) або роблять їх розбіжними (розсіювальні лінзи). Для побудови зображень за допомогою лінз враховують характерні точки (оптичний центр лінзи, її фокус) і лінії цих оптичних пристроїв (головна оптична вісь), а також особливості проходження світлових променів крізь них. Для знаходження положення зображення, одержаного за допомогою лінзи, застосовують формулу лінзи:

$$
\frac{1}{F}=\frac{1}{d}+\frac{1}{f} .
$$

6. Хвильову природу світла характеризують явища інтерференції, дифракції, поляризації і дисперсії. Явище перерозподілу інтенсивності падаючого світла, результатом якого $\boldsymbol{\varepsilon}$ взаємне підсилення чи ослаблення амплітуди двох чи більше електромагнітних хвиль від когерентних джерел, називається інтерференцією. Якщо різниця ходу світлових пучків дорівнюе парній кількості півхвиль, то в даній точці простору спостерігається максимум освітленості:

$$
\Delta l=2 k \frac{\lambda}{2} .
$$

Якщо вкладається непарна кількість півхвиль, то спостерігається мінімум освітленості:

$$
\Delta l=(2 k+1) \frac{\lambda}{2}
$$

де λ - довжина хвилі; $k=1,2,3, \ldots n$.
Явище огинання світлом перешкод і потрапляння світла в зону геометричної тіні називається дифракцією.

Уперше це явище спостерігав Т. Юнг, який пояснив його на основі хвильової теорії світла: дифракційна картина утворюеться внаслідок накладання когерентних хвиль, формуючи максимуми і мінімуми освітленості в зоні геометричної тіні.

Явища інтерференції і дифракції спостерігаються від щілин і перешкод за умови сумірності їхніх розмірів з довжиною хвилі світла.

За певних умов світлу властива поляризація, тобто орієнтація коливань векторів напруженості електричного поля \vec{E} або індукції магнітного поля \vec{B} у певному напрямі, наприклад перпендикулярно до поширення хвилі.

При проходженні світла крізь призму відбувається дисnepсія, тобто розкладання світла в спектр. Це відбувається через те, що показник заломлення середовища залежить від довжини хвилі світла.
7. В основу квантової фізики покладено гіпотезу М. Планка: випромінювання енергї̈ здійснюеться певними мінімальними пориіями - квантами, енергія яких пропорційна частоті випромінювання v:

$$
\varepsilon=h \nu,
$$

де h - стала Планка.
Пізніше А. Ейнштейн поширив квантову гіпотезу на світлові явища, пояснивши таким чином явище фотоефекту. За його тлумаченням світловий квант - це мінімальна порція світлової енергії, локалізована в частинці; що називаеться

фотоном. Таким чином, з точки зору квантової теорії світло це потік фотонів, що рухаються зі швидкістю світла.

Фотон - це елементарна частинка, що характеризуе квант світла $h v$, його імпульс дорівнюе

$$
p=\frac{\varepsilon}{c}=\frac{h \nu}{c}=\frac{h}{\lambda},
$$

а маса залежить від частоти електромагнітного випромінення. Фотон не має маси спокою.
8. Одним з проявів корпускулярної природи світла е явища фотоефекту:

1) кількість електронів, що вилітає з поверхні тіла під дією електромагнітного випромінення, пропориійна його інтенсивності;
2) для кожної речовини залежно від її температури і стану поверхні існує мінімальна частота світла v_{0}, так звана червона межа фотоефекту, за якої зовнішній фотоефект ще можливий;
3) максимальна кінетична енергія фотоелектронів залежить від частоти опромінення \boldsymbol{i} не залежить від його інтенсивності.

Явище фотоефекту знайшло пироке практичне застосування в техніці завдяки використанню фотопровідності і фотоEPC напівпровідників (фоторезистори, фотодіоди тощо).
9. Пояснюючи явище фотоефекту, А. Ейнштейн установив співвідношення, яке називається рівнянням Ейнштейна для зовнішнього фотоефекту:

$$
h v=A_{0}+\frac{m v^{2}}{2}
$$

Рівняння Ейнштейна для фотоефекту узгоджуеться із законами фотоефекту, відкритими раніше О.Г. Столетовим, i пояснює їх з позицій квантових уявлень про природу світла. Зокрема встановлено, що червона межа фотоефекту v_{0} залежить від хімічної природи поверхні, що опромінюється, наявності в матеріалі домішок і визначаеться роботою виходу електрона A_{0} :

$$
\mathrm{v}_{0}=\frac{A_{0}}{h} \text { або } \lambda_{0}=\frac{h c}{A_{0}},
$$

де c - швидкість світла у вакуумі.

Засвоївши матеріал цього розділу; ви будете знати:

- ядерну модель атома, протонно-нейтронну модель ядра, квантові постулати Н. Бора;
- види радіоактивного випромінення та особливості його впливу на живі організми, закон радіоактивного розпаду;
- фізичні величини, що характеризують ядерні процеси (дозиметричні величини, енергія зв'язку, дефект мас);
- будову і принцип дії квантових генераторів;
- фізичні основи ядерної енергетики;
* характерні ознаки і класифікацію елементарних частинок, їхню кваркову модель.

Ви зможете пояснити:

- енергетичні стани атома, природу випромінювання і поглинання світла атомами, сутність спектрального аналізу;
- перебіг ядерних реакцій, ланцюгову реакцію поділу ядер урану;
- атомні і молекулярні спектри, стійкість ядер, існування ізотопів.

Ви будете здатні:

- розв'язувати задачі, застосовуючи квантові постулати Н. Бора, закон радіоактивного розпаду, енергію зв'язку і дефект мас ядра;
- досліджувати треки заряджених частинок, спостерігати спектри речовин;
- записувати ядерні реакції та визначати іхню енергетичну ефективність.

§ 64. Історія розвитку вчення про буgову атома. Яgерна модель атома

Наприкінці XIX і на початку XX ст. у фізиці було отримано кілька визначних дослідних фактів, які привернули увагу вчених до мікросвіту. Це відкриття рентгенівського випромінювання (1895 р., В.К. Рентген, I. Пулюй), радіоактивності (1896 р., А. Веккерель), електрона (1897 р., Дж.Дж. Томсон). Вони ставили під сумнів погляди давніх учених про неподільність атома, суперечили усталеним класичним уявленням про будову речовини, спонукали до поглиблення знань про явища, які відбуваються в мікросвіті. Так зародилася атомна фізика, яка вивчає будову і властивості атома, елементарні процеси на атомному рівні.

Для атомної фізики характерні відстані, сумірні з розміром атома ($\left(0^{-10} \mathrm{~m}\right)$, та енергї порядку $10^{-19} \mathrm{Ak}$ (кілька еВ).

У 1897 р. англійський фізик Дж.Дж. Томсон експериментально відкрив електрон як складову частинку атома і носія найменшого електричного заряду. Він припустив, що атом це позитивно заряджена куля, всередині якої містяться нега-

Модель атома Томсона називають «пудинговою» - за аналогією 3 традиційним британським пирогом 3 родзинками.

> Мал. 5.1. Схема gocrigy Резерфорga

тивно заряджені електрони. Рівномірність їх розподілу в об'ємі кулі та рівність позитивного і негативного зарядів зумовлюють електричну нейтральність атома.

Проте така модель атома мала свої обмеження і не відповідала дослідним фактам, отриманим на той час фізиками. Запропонувати реальну модель атома вдалося лише після дослідів Е. Резерфорда і формулювання Н. Бором квантових постулатів.

У 1911 р. англійський фізик Е. Резерфорд, досліджуючи разом зі своїми співробітниками проходження α-частинками тонких металевих пластинок, установив, що ці заряджені частинки певним чином розсіюються в речовині (мал. 5.1). Вузький пучок швидких альфа-частинок 1 спрямовувався на тонку золоту чи платинову пластинку 2 , за якою розміщувався екран 3 , здатний фіксувати їх попадання на екран спалахами. За допомогою спеціального оптичного пристрою 4 можна було спостерігати і вимірювати кут відхилення φ альфачастинок.

> Альфа-частинки - це позитивно заряджені частинки, заряд яких дорівнює двом зарядам електрона, а маса в чотири рази більша за масу атома Гіррогену.

Більшість із них рухалася майже прямолінійно (кут відхилення φ становив $1-2^{\circ}$). Проте незначна їх частина відхилялася на більші кути; були зафіксовані навіть такі альфачастинки, які після розсіювання

Мал. 52. Яgерна моgель атома змінювали напрям руху на протилежний ($\varphi>90^{\circ}$).

Щоб пояснити одержані результати, Резерфорд припустив, що атом є складним утворенням, схожим на Сонячну систему: всередині його міститься позитивно заряджене ядро, навколо якого обертаються електрони (мал. 5.2). Його розрахунки показали, що в ядрі зосереджена практично вся маса атома, але його розміри набагато менші за самий атом. Вимірювання показали, що лінійні' розміри атома стаwww.testosvit.com

новлять $10^{-10} \mathrm{~m}$, а радіус його ядра дорівнює приблизно $10^{-15} \mathrm{~m}$.

Таким чином, на підставі одержаних експериментальних даних Е. Резерфорд запропонував ядерну модель атома, яка узгоджувалася з результатами його дослідів і пояснювала багато інших явищ, пов'язаних із будовою атома.

Справді, швидкі α-частинки легко долають простір електронних

Мал. 53. Траєкторія α-частинок оболонок атомів, не відчуваючи з їх боку значного впливу, і тому майже не відхиляються від прямолінійної траекторії руху. Проте, коли вони пролітають досить близько від позитивно зарядженого ядра, кулонівська взаємодія між ними змушує ïx викривляти траєкторію і відхилятися на певний кут (мал. 5.3).

Резерфорд на основі законів електромагнітної взаемодії вивів формулу, яка дає змогу обчислити кількість α-частинок, розсіяних на кут φ, залежно від їх енергії і хімічної природи досліджуваного матеріалу. Пізніше ця теоретично виведена формула дістала експериментальне підтвердження, унаслідок чого остаточно утвердила в фізиці ядерну модель атома.

1. Які відкриття стали поштовхом у розвитку сучасної фізики?
2. У чому полягає суть дослідів Резерфорда?
3. Чим відрізняється ядерна модель атома, запропонована Резерфордом, від «пудингової» моделі Томсона?
4. Чому окремі α-частинки в дослідах Резерфорда відхилялися від прямолінійної траєкторії руху?

§ 65. Квантові постулати Бора

Тріумф класичної фізики в поясненні складної будови мікросвіту, який привів Е. Резерфорда до ядерної моделі атома, тривав недовго. При першій же спробі застосувати закони класичної механіки та електродинаміки до опису найпростішого атома Гідрогену фізики зустрілися з труднощами, які здавалися нездоланними.

Як відомо, атом Гідрогену є стійким утворенням, яке складається з ядра-протона і одного електрона, що обертаеться навколо нього під дією кулонівської сили взаємодії (мал. 5.4).

Мал. 5.4. Моgель атома Гіярогену

Якщо вважати орбіту електрона коловою, то одержимо

$$
\frac{m v^{2}}{r}=k \frac{e^{2}}{r^{2}} .
$$

3 теорії електродинаміки Дж. Максвелла відомо, що електрон, який рухаеться з прискоренням, повинен випромінювати електромагнітні хвилі і поступово втрачати енергію. Тобто із часом він має впасти на ядро, i атом припинить існування. Таким чином, за класичними міркуваннями, атоми повинні бути нестійкими утвореннями, які весь час випромінюють суцільний спектр електромагнітних хвиль. Проте цей висновок суперечить практиці, адже насправді вони «живуть» тривалий час і випромінюють енергію лише за певних умов.

Це протиріччя між класичною теорією і практикою спростував у 1913 р. відомий данський учений Нільс Бор, сформулювавши квантові постулати:

1) атоми перебувають у певних стаціонарних станах, у яких вони не випромінюють електромагнітні хвилі;
2) при переході атома з одного стаціонарного стану, що характеризується енергією E_{n}, в інший з енергією E_{m} він випромінює або поглинає квант, що дорівнює:

$$
h v=E_{n}-E_{m} .
$$

При розмірі атома $r \approx 10^{-10} \mathrm{~m}$ швидкість електрона дорівнюватиме $v \approx 10^{\circ} \mathrm{m} / \mathrm{c}$, а його прискорення $a \approx 10^{22} \mathrm{~m} / \mathrm{c}^{2}$.

Перший постулат Бора, який спростовував фундаментальні положення класичної фізики, був експериментально підтверджений у 1913 р. дослідами

Мал. 55. Схема gocліgу Д. Франка і Г. Герца Д. Франка і Г. Герца. Вони досліджували залежність сили струму від напруги у скляній колбі, заповненій парами ртуті (мал. 5.5).

Електрони з катода K під дією електричного поля прямують до сітки C і анода A. Між сіткою C і анодом A існує незначна напруга ($0,5 \mathrm{~B}$), яка гальмуе повільні електрони, не даючи змоги їм досягати анода.

[^0]: © Коршак Є.В., Ляшенко О.I., Савченко В.Ф., 2011
 © Видавництво ГГенеза", оригінал-макет, 2011

[^1]: - цікаві факти, додаткові відомості, дані про вчених
 - важливо знати, запам'ятати
 - для додаткового читання
 - актуалізуючі й контрольні запитання

[^2]: * Пригадайте аналогічні міркування, що застосовувалися під час розрахунку роботи сили пружності в механіці.

[^3]: www.testosvit.com

[^4]: www.testosvit.com

[^5]: * Швидкість світла у вакуумі однакова в усіх системах відліку і не залежить від довжини світлової хвилі.

[^6]: * Роботу виходу частіше вказують в електрон-вольтах (еВ). $1 \mathrm{eB}=1,6 \cdot 10^{-19}$ Дж

